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Abstract

An open problem in Simultaneous Localization and Mapping (SLAM) is the development of algorithms which scale with
the size of the environment. A few promising methods exploit the key insight that representing the posterior in the canonical
form parameterized by a sparse information matrix provides significant advantages regarding computational efficiency and storage
requirements. Because the information matrix is naturally dense in the case of feature-based SLAM, additional steps are necessary
to achieve sparsity. The delicate issue then becomes one of performing this sparsification in a manner which is consistent with
the original distribution.

In this paper, we present a SLAM algorithm based in the information form in which sparseness is preserved while maintaining
consistency. We describe an intuitive approach to controlling the population of the information matrix by essentially ignoring a
small fraction of proprioceptive measurements whereby we track a modified version of the posterior. In this manner, the Exactly
Sparse Extended Information Filter (ESEIF) performs exact inference, employing a model which is conservative relative to the
standard distribution. We demonstrate our algorithm both in simulation as well as on two nonlinear datasets, comparing it against
the standard EKF as well as the Sparse Extended Information Filter (SEIF) by Thrun et al. The results convincingly show that our
method yields conservative estimates for the robot pose and map which are nearly identical to those of the EKF in comparison
to the SEIF formulation which results in overconfident error bounds.

I. INTRODUCTION

A skill which plays an integral role in achieving robot autonomy is the ability to operate in a priori unknown environments.
Viewed as a coupled problem of simultaneously performing localization and mapping, SLAM is further complicated by the
stochastic nature of vehicle motion and observations. Most effective SLAM algorithms address these issues by posing the
problem in a probabilistic framework with the goal then being the estimation of the joint distribution over the map and vehicle
pose.

Beginning with the seminal work of Smith et al. [1], the Extended Kalman Filter (EKF) SLAM formulation has proven
to be particularly popular. In large part, this is due to its relative simplicity, requiring that one only maintain the first two
moments of the distribution to account for the coupling between the robot and map. From knowledge of the correlation, the
EKF is able to exploit feature observation data to update the pose and map estimates. At the same time, this capability comes
at the cost of complexity which is quadratic in the number of state elements. As a result, SLAM algorithms relying upon an
EKF have traditionally been limited to relatively small environments.

Representing the joint Gaussian distribution in the dual canonical form, recent work has given rise to algorithms capable
of scaling with the environment. Pivotal insights by Thrun et al. [2] and Frese et al. [3] have revealed that, in the context of
SLAM, many of the off-diagonal elements in the inverse covariance (information) matrix are inherently near zero. Considering
the graphical model represented by the information matrix [4], the implication is that a majority of the links in the Markov
network are relatively weak. By essentially breaking these weak links, Frese [5] and Paskin [4] are able to approximate the
graphical model by a sparse tree structure which provides for scalable SLAM algorithms. Alternatively, the Sparse Extended
Information Filter (SEIF) by Thrun et al. [2] relies upon a version of the Extended Information Filter, the dual to the EKF.
In the case where the information matrix is sparse, the authors demonstrate that state estimation can be performed in near-
constant time. While a majority of the links in the information matrix are weak, though, they are nonetheless nonzero. SEIFs
then employ a strategy by which the posterior is approximated with an information matrix having the desired sparse structure.
The algorithm has efficiently been applied to large, real-world datasets with a priori unknown data association [6].

Together with the intuitive characteristics of the canonical representation noted in [2], the success of SEIFs has brought
a lot of attention to the information filter formulation of the SLAM problem. The one issue which has, up to now, largely
gone unnoticed is the implication of approximating the posterior to achieve the necessary sparseness. A close look at the
sparsification strategy reveals that the resulting posterior is prone to overconfidence. In [7], the authors show that, while the
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state estimates are only slightly overconfident when expressed in a local reference frame, they suffer from an exaggerated global
inconsistency. The paper presents a modified sparsification rule which yields a posterior which is both locally and globally
consistent relative to the full Kalman solution but is no longer computationally tractable.

Our objective in this paper is to present an information-based formulation to the SLAM problem which achieves exact
sparseness while being computationally efficient. Rather than relying upon an approximation to remove links from the
information matrix, the algorithm adopts a new strategy which actively controls the population of the matrix by relocalizing the
robot within the map. The filter then maintains an estimate of the state which is both globally and locally conservative relative
to the full Kalman solution. We demonstrate the algorithm alongside the EKF and SEIF on a linear Gaussian simulation as
well as two real-world experiments, including a benchmark nonlinear dataset. The results reveal that while the SEIF is globally
inconsistent, our algorithm yields estimates nearly identical to those of the EKF which are globally and locally conservative.

II. INFORMATION FILTER

A. Canonical Form

Let ξt be a random vector having a Gaussian probability density, ξt ∼ N
(
ξt;µt,Σt

)
described completely by its mean,

µt, and covariance matrix, Σt. An expansion of the exponential term defining the multivariate normal distribution, p(ξt) ∝
exp

{
− 1

2 (ξt − µt)
>Σ−1t (ξt − µt)

}
, yields an equivalent representation for the probability density function, N−1

(
ξt;ηt,Λt

)
,

parameterized by the information vector and information matrix, ηt and Λt, respectively.

Λt = Σ−1t ηt = Σ−1t µt (1)

The canonical representation for the multivariate Gaussian is the dual of the standard form in the sense of the fundamental
processes of marginalization and conditioning, as exemplified in Table I. While marginalization is hard in the information form,
requiring a matrix inversion, it is easy in the covariance form. The opposite is true in regards to the conditioning operation.
Further details regarding this duality in the context of filtering can be found in [8].

TABLE I
SUMMARY OF MARGINALIZATION AND CONDITIONING OPERATIONS ON A GAUSSIAN DISTRIBUTION EXPRESSED IN COVARIANCE AND INFORMATION

FORM

p (α,β) = N
([µα

µβ

]
,
[

Σαα Σαβ
Σβα Σββ

])
= N−1

([ηα
ηβ

]
,
[

Λαα Λαβ
Λβα Λββ

])
MARGINALIZATION CONDITIONING

p (α) =
∫
p (α,β) dβ p (α | β) = p (α,β) /p (β)

COVARIANCE FORM
µ = µα µ′ = µα + ΣαβΣ−1

ββ (β −µβ)

Σ = Σαα Σ′ = Σαα − ΣαβΣ−1
ββΣβα

INFORMATION FORM
η = ηα − ΛαβΛ−1

ββηβ η′ = ηα − Λαββ

Λ = Λαα − ΛαβΛ−1
ββΛβα Λ′ = Λαα

One quality of the canonical form is its relationship with Gaussian Markov random fields in which nodes in the graph
represent individual state variables and edge structure describes their conditional independence relationships. The information
matrix effectively serves as an adjacency matrix for the graph [4], with the strength of constraints between pairs of variables
proportional to the corresponding elements of the matrix. Off-diagonal components which are zero then denote the absence of
links in the Markov network. Thus, the information matrix has the particular advantage of explicitly representing the conditional
independence of state variables.

B. Feature-based SLAM

The goal of any SLAM algorithm is to concurrently perform navigation and map-building in the presence of uncertainty in
vehicle motion and environmental observations. With feature-based SLAM formulations, the map is described as a collection of
stationary primitives, e.g. lines, points, etc. The robot pose, xt, together with the set of map elements, M = {m1,m2, . . . ,mn},
are represented together by the state vector, ξt = [x>t M>]>. The coupling between the pose and map is addressed by
considering the joint probability distribution for the state. Adopting a Bayesian framework, a model of the joint posterior is
tracked as it evolves as a result of the uncertainty in vehicle motion and measurement data. Typical SLAM implementations
make the assumption that this uncertainty is a result of independent white Gaussian noise which corrupts the motion and
measurement models. One can then show that the posterior obeys a Gaussian distribution.

p
(
ξt|zt,ut

)
= N

(
ξt;µt,Σt

)
= N−1

(
ξt;ηt,Λt

)
(2)



The belief function is traditionally represented in the standard form which can be tracked relatively easily with the EKF.
Modifying the posterior to reflect the effect of vehicle motion is a constant-time process as it involves a combined process of
state augmentation and marginalization, both of which are easily performed in the covariance form. On the other hand, it is
well known that incorporating new measurement data requires a conditioning step which is quadratic in the size of the state.
Furthermore, maintaining the correlation among state estimates leads to a dense covariance matrix which must be stored. For
small scale environments, these problems are surmountable, but as the map size becomes increasingly large, implementing a
full EKF quickly becomes intractable.

Alternatively, employing the canonical representation of the posterior, the filtering process reflects the duality between the two
forms. Performing measurement updates (conditioning) is constant-time, while the marginalization component of the projection
step, in general, is quadratic in the state dimension, at best. Furthermore, recovering the estimate of the mean requires the
O(n3) inversion of the information matrix per (1). As a result of these limitations, the information filter has had relatively
limited use in SLAM.

Recently, Thrun et al. [2] and Frese et al. [3] have made the pivotal observation that, when normalized, the information
matrix tends to be nearly sparse. The matrix is dominated by a small percentage of terms which are significantly larger than
the remaining elements. In general, the links between the robot and the map are stronger for nearby, recently observed features
while the constraints are weak for distant features. The same is true for inter-landmark terms which tend to decay exponentially
with the distance traversed by the robot between observations [9]. Referring to the graphical interpretation of the information
matrix, these weak links then imply that, given relatively few features, the robot is nearly conditionally independent of much
of the map.

Though many of the terms in the normalized information matrix are very small, the SLAM process naturally leads to the full
population of the matrix. To get a better understanding of why this is, consider a simple example in which the map consists
of five features. Suppose that the off-diagonal terms in the information matrix corresponding to the robot, xt, are non-zero for
four of the features and that the remaining landmark, m4, has shared information with another feature. These links between
the robot and the map are created when features are observed. The graphical model along with the information matrix are
illustrated in the left-hand side of Figure 1(a). The time projection step can be viewed as an initial augmentation of the state
with the new robot pose, xt+1, which, evolving by a Markov process, is linked only to the previous pose as indicated in
the middle figure. At this point, the information matrix remains sparse. Subsequently marginalizing out xt, though, creates
links between all states which share constraints with the previous pose. The result is a fully connected subset of nodes and,
correspondingly, a population of the information matrix. The only remaining zero entries correspond to the lone feature, m4,
which will become linked to the robot upon the next observation. The time projection step will then lead to a fully connected
graph and, correspondingly, a dense information matrix.

Hence, with online SLAM implementations in which only the current pose of the robot is estimated, the marginalization of
the previous pose in the projection step naturally results in a dense information matrix. Alternatively, by retaining an entire
trajectory history, exact sparsity can be maintained [10] at the cost of storage requirements which become significant for large
datasets.

Returning to the example pictoralized in Figure 1(a), note that while the time projection step populates the information
matrix, the strength of the off-diagonal links decays with time. This behavior is the reason why a majority of the elements in
the normalized matrix are very small. The authors show in [2]–[4] that if the posterior can be represented by an exactly sparse
approximation, it is possible to achieve significant gains when it comes to both storage and time requirements. In particular, a
bound on the number of links between the robot and the map allows for near constant-time performance of the time projection
step and also controls the fill-in of the information matrix resulting from marginalization.

III. EXACTLY SPARSE EXTENDED INFORMATION FILTERS

Map elements having shared information with the robot are said to be active. In feature-based SLAM implementations, a
feature becomes active when it is first observed. With time, the strength of the link with the robot decays and is strengthened
only upon being re-observed. Thus, while the off-diagonal terms may become arbitrarily small, they will never become zero.
In order for a landmark to become passive (i.e. no shared information), the link with the robot must explicitly be broken.

A. Problem Formulation

In describing the desired sparsity of the information matrix, we adopt the two measures utilized by Thrun et al. [2]. Denote
the maximum allowable number of active features as Γa and the number of inter-landmark links in the matrix by Γp. Let us
then partition the map into two sets of features, M = {m+,m−}, where m+ represents the active features for which the
off-diagonal terms for the robot pose are non-zero, and m− denotes the passive landmarks, having no direct constraint to the
vehicle.

Controlling the sparsity of the information matrix is, in large part, a direct consequence of maintaining the Γa bound. By
regulating the number of active features, it is possible to limit the population of the matrix. Consider, for example, the situation
depicted in the left-hand side of Figure 1(b) in which four of the five features are active. At this point, if xt were marginalized
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Fig. 1. A graphical explanation of SEIF’s methodology for controlling sparsity in the information matrix. (a) A sequence of illustrations depicting the evolution
of the Markov network and corresponding information matrix resulting from time projection when viewed as a two-step process of state augmentation followed
by marginalization. Darker shades imply larger magnitudes with white indicating zero values. From left to right we have: (1) the robot xt connected to four
active features, m1:3 and m5; (2) state augmentation of the time-propagated robot pose xt+1; (3) marginalized distribution where the old pose, xt, has been
eliminated. (b) A sequence of illustrations highlighting the concept behind sparsification. If feature m1 can first be made passive by eliminating its link to
the old pose, xt, then marginalization over xt will not link it to the other active features. This implies that we can control fill-in of the information matrix
by bounding the number of currently active features.

out, the four active features in m+ would become fully connected, potentially violating the Γp bound. Instead, if one of
landmarks, m1, were first made passive, the number of non-zero elements created as a result of marginalization could be
controlled. Thus, enforcing the desired sparsity pattern corresponds to maintaining a bound on the number of active features.
Since features do not naturally become passive, a sparsification routine which deliberately breaks the links is necessary.

B. SEIF Sparsification

The SEIF breaks a link between the robot and a feature by approximating the posterior with a distribution in which the robot
is conditionally independent of the landmark. The map is broken into three disjoint sets, M = {m0,m+,m−}, where m−

refers to the passive landmarks which will remain passive and, in a slight abuse of notation, m+ is the set of active features
which will remain active, and m0 are the active features which will be made passive. The sparsification routine proceeds from
a decomposition of the posterior

p(xt,m
0,m+,m−) = p(xt |m0,m+,m−) p(m0,m+,m−)

= p(xt |m0,m+,m− = S>m−µt) p(m0,m+,m−)
(3)

where setting the passive elements to their mean, S>m−µt, in the last line is valid due to their conditional independence with
respect to the robot. SEIFs then deactivate the landmarks by replacing (3) with an approximation to the posterior which drops
the dependence upon m0:

p̃SEIF(xt,m
0,m+,m−) = p(xt |m+,m− = S>m−µt) p(m0,m+,m−) (4)

While the decomposition in (3) is theoretically sound, it is no longer valid to condition on a particular value for the passive
features while simultaneously ignoring the dependence upon m0. Given only a subset of the active features, the robot pose is
no longer conditionally independent of the passive map.

By enforcing the conditional independence between the robot and the deactivated features, SEIFs rely upon approximate
inference on an approximate posterior and, as a result, are prone to inconsistency [7]. In particular, the authors show that
sparsifying in this manner leads to a global map which is significantly overconfident while the local relationships are preserved.

C. ESEIF Sparsification

Rather than deliberately breaking constraints with the robot to maintain a bound on the number of active features, ESEIFs
take the approach of essentially controlling the initial formation of links. As soon as a feature is first observed, it is linked to
the current robot pose. As noted earlier, the strength of this constraint will decay with time but never truly disappear, leading
to a growing number of links between the robot and the map.

Noting the nature of this link formation, ESEIFs control the number of active features by deliberately marginalizing out
the robot pose. The vehicle is relocated within the map using observations of a few known landmarks. The new pose is then
conditionally independent of the rest of the map, and the robot is linked only to the features used for relocalization.



For a more detailed description of the ESEIF sparsification strategy, we consider a situation which would give rise to the
representation in Figure 1 which consists of both active and passive features. Suppose that the robot makes four observations,
Zt = {z1, z2, z3, z5}, three being of active features and one of a passive feature:

z2 = h(xv,m2), m2 ∈m+ z5 = h(xv,m5), m5 ∈m+

z1 = h(xv,m1), m1 ∈m0 z3 = h(xv,m3), m3 ∈m−

Updating the posterior based upon all four measurements would result in the strengthening of the off-diagonal entries in the
matrix pairing the robot with the three observed active features. Additionally, a link would be created with the currently passive
map element, m3, leading to the graph structure depicted in the left-hand side of Figure 1(a). In the case where this would
lead to a violation of the Γa bound, one strategy would be to disregard the observation of the passive feature entirely. With
ESEIFs, though, it is possible to incorporate all measurement data while maintaining the desired sparsity pattern.

In the ESEIF sparsification step, the measurement data is partitioned into two sets, zα and zβ , where the first set is used
for updating the filter and the second is reserved for performing relocalization. Of the four measurements available in our
example, group that of the passive feature together with one active measurement as zα = {z1, z3}, leaving zβ = {z2, z5}. To
sparsify, we first apply the update step followed by the combined process of marginalization and relocalization.

1) Posterior Update: A Bayesian update is performed on the joint posterior, p(ξt | zt−1,ut) = N−1
(
ξt;ηt,Λt

)
based

upon the zα measurements:
p(ξt | zt−1,ut)

zα={z1,z3}−−−−−−−→ p1
(
ξt | {zt−1, zα},ut

)
where p1

(
ξt | {zt−1, zα},ut

)
= N−1

(
ξt; η̄, Λ̄

)
follows from the standard update process for the information filter. Note that

we can perform this step in constant-time with, in the nonlinear case, access to the mean estimate for the robot as well as m1

and m3. The information matrix, Λ̄t, is modified as depicted in Figure 2 with the strengthening of the constraints between the
vehicle and the active feature, m1 and importantly, the creation of shared information with the previously passive feature, m3.

2) Marginalization and Relocalization: The addition of a new constraint between the robot and a map element results
in a violation of, Γa, the bound on the number of active features. The ESEIF sparsification routine then proceeds by first
marginalizing out the vehicle pose

p2
(
Mt | {zt−1, zα},ut

)
=

∫
xt

p1
(
ξt | {zt−1, zα},ut

)
dxt

= N−1
(
Mt; η̌t, Λ̌t

)
Following the representation of the marginalization process presented in Table I, the canonical parameterization of the marginal
is calculated as

p2
(
Mt | {zt−1, zα},ut

)
= N−1

(
Mt; η̌t, Λ̌t

)
Λ̌t = S>m0,m+,m−Λ̄tSm0,m+,m− − S>m0,m+,m−Λ̄tSxt

(
S>xtΛ̄tSxt

)−1
S>xtΛ̄tSm0,m+,m− (5a)

η̌t = S>m0,m+,m− η̄t − S>m0,m+,m−Λ̄tSxt

(
S>xtΛ̄tSxt

)−1
S>xt η̄t (5b)

where Sm0,m+,m− and Sxt are projection matrices mapping the state space to the
{
m0,m+,m−

}
and xt subspaces,

respectively.
The inverse term involves the block diagonal of the information matrix corresponding to the vehicle pose, STxtΛ̄tSxt , which

is of fixed size. Meanwhile, the STm0,m+,m−Λ̄tSxt matrix corresponds to the shared information between the map and the
vehicle pose and, taken as an outer product over the vehicle sub-block, yields a matrix having nonzero values only for the
active feature indices. It is a result of this term that marginalization establishes the connectivity among the active features
shown in the right-hand side of Figure 2. The computational complexity of this matrix outer product is limited by the Γa
bound and the order of the matrix inversion is fixed. Thus, the marginalization can be performed in constant-time.

We complete sparsification in ESEIFs by relocalizing the vehicle within the map using the remaining zβ measurements.
The new pose estimate is, in general, given by a nonlinear function of measurement data and corresponding feature estimates
of the form in (6a) where wt ∼ N

(
wt; 0,R

)
is white Gaussian noise. Equation (6b) corresponds to the linearization about

the mean of the marginal distribution, N−1
(
Mt; η̌t,Λ

)
in (5). The Jacobian, G, is sparse as the only non-zero columns are

those corresponding to the map elements used for relocalization. Subsequently, only the mean estimates for these features are
necessary for the linearization.

xt = g
(
mβ , zβ

)
+ wt (6a)

≈ g
(
µ̌mβ , zβ

)
+ G

(
m− µ̌t

)
+ wt (6b)
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Fig. 2. Sparsification as performed by ESEIFs during the measurement update step. At time t, three of the mapped features are active, m+ = {m1,m2,m5}
and two are passive, m− = {m3,m4} as indicated by shaded off-diagonal elements of the information matrix. The robot makes three observations of active
features, z1, z2, and z5, and one of a passive feature, z3. The first step of the ESEIF sparsification algorithm, as shown in the left-most diagram, is to
update the posterior based upon a subset of the measurements, zα = {z1, z3}, resulting in a stronger constraint with m1 as well as the formation of a link
with m3, as depicted in the middle figure. Sparsification then proceeds with the marginalization of the vehicle pose and subsequent relocation of the robot
based upon the remaining measurements, zβ . The implication on the information matrix is the connectivity of the initial set of active features and a desired
restriction on the number of constraints with the vehicle pose.

Augmenting the map distribution (5) with the new pose estimate yields a state which can be shown to have the following
canonical parameterization:

pESEIF(ξt | zt,ut) = N−1
(
ξt; η̆t, Λ̆t

)
η̆t =

[
R−1

(
g(µ̌mβ , zβ)−Gµ̌t

)
η̌t −G>R−1

(
g(µ̌mβ , zβ)−Gµ̌t

)] Λ̆t =

[
R−1 −R−1G

−G>R−1
(
Λ̌t + G>R−1G

)] (7)

Due to the sparsity of G, most terms in −R−1G of the information matrix in (7) which link the robot to the map are
zero, except for those corresponding to the landmarks used for relocalization. The new instantiation for the robot pose is then
conditionally independent of the rest of the map. As a result, ESEIF sparsification leads to the joint posterior having the desired
factorization:

pESEIF(ξt | zt,ut) = p(xt |mβ , zβ) p2(Mt | {zt−1, zα},ut)

As reflected by the resulting information matrix depicted in Figure 2, the active features are then limited to those used for
relocalization.

In this manner, ESEIFs control the size of the active map and, in turn, the sparseness of the information matrix. Like the full
EKF, the ESEIF performs exact inference on an approximate model, albeit on a different posterior. When we first marginalize
out (kidnap) and subsequently relocalize the robot, we are performing the dual of kidnapping and relocation for the standard
EKF. Essentially, we are ignoring the odometry data which links the current and previous poses. Hence, whereas the full EKF
tracks the Gaussian approximation to the posterior, p(ξt | Z

t), ESEIFs and the relocated EKF maintain the Gaussian model
of an alternate distribution, p(ξt | Z

t∗). In this way, the ESEIF employs exact inference on an approximate model for which
the information matrix is exactly sparse.

D. Recovering the Mean
A drawback of representing the posterior in the canonical form is that we no longer have access to the mean vector or

covariance matrix. When the system equations are nonlinear, a subset of the mean is required to perform linearizations. Naively,
we could recover the entire mean vector as µt = Λ−1t ηt, though this operation is cubic in the dimension of the state and quickly
becomes intractable. Instead, we can pose the problem in terms of solving a set of linear equations

Λtµt = ηt (8)

and take advantage of the sparseness of the information matrix. There are a number of techniques which iteratively solve such
sparse, symmetric positive definite systems including conjugate gradient descent [11] and, more recently, the multilevel method
proposed by [12]. Aside from loop closures, the mean vector evolves rather slowly in SLAM and, thus, the optimization can
be performed over the course of multiple time steps. This then allows us to bound the number of iterations required per time
step [13].



E. Data Association

Traditionally, the problem of data association is addressed by evaluating the likelihood of a measurement for different
correspondence hypothesis. The distribution follows from marginalizing out all state elements except for the variables we are
interested in, xi and xj . From the duality indicated in Table I, this operation is easy in the standard form but difficult with the
canonical parameterization where a large matrix inversion is necessary. Instead, Thrun et al. [2] first compute the conditional
distribution for the Markov blanket for xi and xj , p(xi,xj ,xk | xl), which involves simply extracting a sub-block of the
information matrix. They then invert this matrix and take the covariance sub-block corresponding to p(xi,xj | xl) which
they use for data association. While the authors have had success using this conditional covariance, it can be shown to yield
overconfident estimates for the likelihood [14].

Alternatively, Eustice et al. [14] propose a method which solves for conservative estimates for the marginal covariance. The
technique stems from posing the relationship, ΛtΣt = I, as a sparse system of linear equations, ΛtΣ∗i = ei, where Σ∗i and
ei denote the ith columns of the covariance and identity matrices, respectively. To determine the robot pose covariance, the
iterative algorithms previously presented for mean recovery can be used to solve the set of equations formed from the robot
pose columns. Combining the estimate for robot pose covariance with a conservative estimate for the covariance of any map
element gives rise to a joint covariance which is itself conservative. The joint covariance is then used to represent the marginal
distribution for data association.

IV. RESULTS

To better understand the effectiveness of the two different sparse information filters, we compare the performance of ESEIFs
and SEIFs to the standard EKF when applied to different forms of the SLAM problem. In the first case, we take a look at a
controlled linear Gaussian simulation for which the KF, the optimal Bayesian estimator, is the “gold standard”. We then follow
with experiments using real-world nonlinear datasets including a benchmark outdoor data set widely popular in the SLAM
community.

A. Linear Gaussian Simulation

To systematically analyze the two information-based filters, we first apply the three estimators in a controlled simulation.
The environment consists of a set of point features, uniformly distributed to achieve a desired density of 0.10 features per unit
area. The vehicle moves translationally according to a linear, constant velocity motion model and, at any time step, is able to
observe the relative position to a limited number of neighboring features. Both the vehicle motion as well as the measurements
are corrupted by additive white Gaussian noise.

As a basis for comparison, we apply the Kalman Filter, the optimal estimator for linear Gaussian problems. The ESEIF
and SEIF are implemented with a limit of Γa = 10 active features. When sparsifying the ESEIF, we reserve as many of the
observations for relocalizing the robot as possible, to the extent that we do not violate the Γa bound.

In the LG case, sparse information filters have already been shown to be computationally efficient [2]. Instead, we are
interested in evaluating the effect that the different sparsification strategies have on the estimation accuracy. To that end, we
perform a series of Monte Carlo simulations, using the normalized estimation error squared (NEES) [15] to measure filter
consistency using a pair of metrics. As one measure, we use the Euclidean distance between the state estimates and the
ground truth which corresponds to the global error. To get a local/relative measure of error, we first reference the robot
and map positions relative to the first observed feature, xm using the standard compounding operation, xmi = 	xm ⊕ xi.
We then compute the second error metric as the distance to the root-shifted representation of the ground truth. We plot the
global normalized errors for the estimated vehicle position as well as for one of the map elements in Figures 3(a) and 3(b),
respectively. Comparing these errors with the 97.5% chi-square upper bound indicated by the horizontal line, we see that the
ESEIF yields consistent position estimates with errors similar to those of the KF. The normalized errors attributed to the SEIF,
on the other hand, are noticeably larger, frequently exceeding the chi-square bound. The local errors shown in Figures 3(c)
and 3(d) are similar for all three filters, generally smaller than the confidence threshold. This behavior indicates that, in the
linear Gaussian case, ESEIFs maintain a state estimate which is both globally and locally consistent while the SEIF leads to
errors which are consistent locally but inconsistent in the absolute sense.

As a related consequence of the ESEIF sparsification strategy, the filter maintains conservative uncertainty estimates. In
Figure 4(a) we compare the global map uncertainties for the two information filters to those of the Kalman Filter. In particular,
from the inverse of the information matrices, we compute, for each feature, the log of the ratio of the covariance sub-block
determinant to the determinant of the sub-block for the KF. Since the KF solution represents the true distribution, values larger
than zero correspond to conservative estimates for a feature’s position while values less than zero are a sign of overconfidence.
As the histogram demonstrates, the ESEIF is conservative in its estimate for the absolute position of each feature while each of
the marginals represented by the SEIF are overconfident. When we transform the maps relative to the first observed feature, we
see in Figure 4(b) that the overconfidence of the SEIF is less severe while the ESEIF remains conservative. As a consequence
of the overconfidence of its global map, the one exception in the case of the SEIF is the representation of the original world
origin in the root-shifted reference frame.
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Fig. 3. The time history of the (a), (b) global and (c), (d) local normalized errors for the LG results, estimated from a series of Monte Carlo simulations.
Plotted in (a) and (c) are the two errors for the vehicle. In (b) and (d) we show the errors for one of the features which is representative of the other elements
in the map. The horizontal threshold denotes the 97.5% chi-square confidence bound. The local ESEIF and SEIF estimation errors are similar in magnitude
to that of the Kalman Filter. The global error attributed to the SEIF, meanwhile, is noticeably larger, exceeding the chi-square bound. This indicates that the
SEIF preserves local relationships but leads to estimates which are globally overconfident while the ESEIF maintains both global and local consistency.
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Fig. 4. The LG simulation estimates of map uncertainty maintained by the ESEIF and SEIF compared with that of the KF. For each feature, we consider
the log of the ratio of the covariance sub-block determinant for the information filters to the determinant for the KF. Values equal to zero indicate an exact
estimate for the uncertainty. Log ratios greater than zero imply conservative estimates while values less than zero correspond to overconfidence. In (a) we show
a histogram describing the global measure of uncertainty determined directly from the inverse of the information matrices. The SEIF yields map estimates
which are largely overconfident while the ESEIF leads to estimates which are conservative. Depicted in (b), the overconfidence of the SEIF is less severe
when we consider the relative map uncertainty which follows from root-shifting the state to the first feature added to the map. The one outlier corresponds
to the original world origin as represented in the new reference frame. Meanwhile, the histogram shows that the ESEIF maintains conservative estimates for
the relative map covariance matrix.

B. Experimental Validation

The linear Gaussian simulations allow us systematically analyze the accuracy of the sparsified filters when we are able to
perform inference on an exact model. Unfortunately, for most real-world applications, both the vehicle motion and observation
models are nonlinear and are corrupted by noise which is not Gaussian. To demonstrate the application of ESEIFs to typical
SLAM problems, we implement the algorithm along with the SEIF and the EKF on two nonlinear datasets.

For the first real-world application of SLAM, we consider the benchmark Victoria Park dataset, widely used as a testbed
for SLAM algorithms. A truck equipped with dead-reckoning sensors and a laser scanner drives in a series of loops within
Victoria Park, Sydney. Using a simple perceptual grouping implementation, we are able to detect tree trunks located throughout
the park among the laser data which is cluttered with spurious returns. We solve the data association problem offline to ensure
that the correspondences are the same for each filter.

We implement the ESEIF and SEIF estimators together with the EKF which has been successfully applied to this dataset
in the past. We limit the number of active features to a maximum number of Γa = 10 for the information filters. When we
perform sparsification in the ESEIF, our priority is again on relocation in that we reserve as many tree observations as possible
(i.e. no more than Γa = 10) for the purpose of adding the vehicle back into the map. Remaining measurements, if any, are
used to update the ESEIF prior to marginalization. This helps to minimize the influence of spurious data on the relocated
vehicle pose.

We plot the ESEIF and SEIF estimates of the map together with the three sigma uncertainty bounds in Figures 5(a) and
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Fig. 5. Map and vehicle trajectory estimates for the Victoria Park dataset. In each, we include the final EKF map which agrees with previous results published
in the literature. The top two plots represent the global state estimate while the two at the bottom are the result of root-shifting the map into the vehicle frame
via compounding: xvi = 	xv ⊕ xi. The plot in (a) presents the results of the ESEIF, including the three sigma confidence bounds for each of the features.
The ESEIF produces feature estimates which are nearly identical to those of the EKF and, while it is omitted to make the plot readable, the uncertainty
ellipses are very similar for the two filters. In (b), we see that while the SEIF and EKF maps are alike, the difference between the two estimates is noticeably
larger for the SEIF algorithm. Additionally, the inset reveals that the SEIF yields global error estimates which are significantly overconfident. Looking at the
maps expressed in the vehicle frame, though, we see that both (c) the ESEIF and (d) SEIF preserve the relative map structure.

5(b), respectively. The estimates of the 3 km trajectory for the car are superimposed on the plot. As a basis for comparison,
the plots include the feature locations resulting from the EKF which are nearly identical to those published elsewhere. Both
sparsified filters yield similar maps though the deviation from the EKF estimates is noticeably larger for the SEIF than it
is for the ESEIF. Furthermore, the global confidence bounds for the ESEIF are conservative, yet comparable to the feature
uncertainties maintained by the EKF while they are significantly overconfident for the SEIF. While not ground truth, the EKF
represents the baseline which the information filters strive to match and, yet, many of the EKF estimates lie outside the three
sigma uncertainty bounds for the SEIF. This is especially evident in the periphery as we indicate in the inset plot. As we saw in
the LG simulation, all three algorithms seem to equivalently represent the local map relationships given by the transformation
of the map into the vehicle’s reference frame at its final pose. Both the ESEIF relative map shown in Figure 5(c) and the SEIF
relative map in Figure 5(d) are almost identical to the corresponding EKF results. In this case, the relative ESEIF and SEIF
uncertainty bounds now capture the EKF estimate for the feature locations. The SEIF algorithm allows us to achieve results
which are similar to the standard EKF in the local but not global sense while ESEIFs provide a conservative map estimate
which is nearly identical to the EKF both globally and locally.
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Fig. 6. Histograms of the ESEIF and SEIF uncertainty estimates as compared to the EKF results for the Victoria Park dataset. We again use the log of
the ratio of the covariance sub-block determinants for each feature. The histogram in (a) corresponds to the direct filter estimates and is representative of the
global uncertainty. The ESEIF maintains conservative estimates for the uncertainties while the SEIF estimates are overconfident when compared to the EKF.
Expressing the map in the vehicle’s reference frame, (b) demonstrates that SEIFs remain overconfident but are better able to capture the relative uncertainty.
Due to the global overconfidence, there is an outlier corresponding to the representation of the global origin in the robot’s frame. Meanwhile, the ESEIF local
estimates remain conservative relative to the EKF.

We have seen from the plots of the two SLAM maps that SEIFs are much more confident in their state estimates. In Figure
6(a) we compare the global uncertainty of each feature for the ESEIF and SEIF to the EKF, again using the log of the ratio of
the determinant of the feature covariances. As with the linear Gaussian simulations, the ESEIF log ratios are all greater than
zero, indicating that ESEIFs maintain conservative estimates for the global uncertainty of each state element. On the other
hand, those of the SEIF are largely overconfident. Expressing the state in the vehicle reference frame, the histogram in Figure
6(b) reveals that the SEIF remains overconfident, although to a lesser extent. The one exception is again the representation of
the global origin in the vehicle frame and is a direct consequence of the global inconsistency of SEIFs. The ESEIF, meanwhile,
remains conservative in the relative frame.

In the second experiment, a wheeled robot drives around a gymnasium in which 64 track hurdles are positioned at known
locations along the baselines of four adjacent tennis courts. Wheel encoders provide the input to the kinematic motion model
while observations of the environment are made using a SICK laser scanner. Data association is again performed offline and
is the same for each filter.

We perform SLAM on the data again using both the ESEIF and SEIF alongside a standard EKF implementation. When
necessary, we employ the two sparsification strategies to maintain a bound of Γa = 10 active features. During ESEIF sparsi-
fication, we relocate the robot using a single feature observation which provides a measurement of the relative transformation
(translation and rotation) between the vehicle and the hurdle.

In Figure 7(a), we show the final map estimated by the ESEIF, overlayed onto a depiction of the ground truth. The ellipses
drawn around each feature correspond to the three sigma bound on the position of one of the hurdle legs. The same plot is
shown in Figure 7(b) for the map estimated using the SEIF algorithm. Notice that the uncertainty bounds maintained by the
SEIF are significantly overconfident and, for many hurdles, do not include the true feature position. While we are able to
maintain an estimate of the state which is both globally and locally conservative compared with that of the EKF using ESEIFs,
enforcing sparsity in the SEIF results in an estimate which suffers from global inconsistency.

V. DISCUSSION

We have shown both in simulation as well as with a pair of nonlinear datasets that the ESEIF maintains error measures which
are both globally and locally conservative relative to the full Kalman estimates. In the linear Gaussian case, the implication
is that the ESEIF sparsification strategy preserves consistency according to both metrics. On the other hand, as the ESEIF is
formulated upon the dual of the EKF, it is subject to the same convergence issues that are attributed to the EKF for nonlinear
applications [15]. As such, though the ESEIF error estimates are relatively conservative, this does not guarantee consistency in
such cases. Nonetheless, the ESEIF algorithm is able to capitalize upon the computational benefits of the sparse information
form without the cost of additional overconfidence. In this manner it provides an efficient means of achieving estimates nearly
identical to those of the EKF which has been successfully applied in a number of real-world situations.

VI. CONCLUSION

Of late, many researchers in the robotics community have been interested in developing solutions to the SLAM problem
which scale with environments of arbitrary size. One approach that is particularly promising follows from the key insight
that the information matrix is relatively sparse for feature-based SLAM. In the case where the matrix is exactly sparse, state
estimation can be performed in near-constant time, irrespective of the number of landmarks in the environment.

While a majority of the elements in the information matrix are relatively weak, the matrix is naturally dense due to the effect
of marginalizing out old robot poses. To achieve the efficiency benefits, the SEIF algorithm enforces sparsity by deliberately
breaking weak links between the robot and the map. As a consequence of this pruning strategy, the SEIF state estimate suffers
from global inconsistency.
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Fig. 7. The final maps generated by the (a) ESEIF and (b) SEIF algorithms. Included is an outline of the tennis courts overlayed with the ground truth hurdle
poses indicated by the black cross hairs. The ellipses centered at the base leg of each feature represent the three sigma uncertainty bounds for position. Note
the significant difference in magnitude between the confidence estimates maintained by the two filters. While the true feature locations are captured by the
ESEIF uncertainty regions, a majority of the hurdles fall outside the SEIF ellipses. This overconfidence is a result of the approximation employed by SEIFs
to enforce sparseness and is indicative of global inconsistency.

In this paper, we have introduced an algorithm for feature-based SLAM which achieves an exactly sparse information matrix
while maintaining global and local consistency, relative to the standard EKF. We have shown that, by periodically marginalizing
out the robot and then relocalizing it within the map, we control the number of active landmarks and, in turn, the population
of the information matrix. The ESEIF is then able to benefit from the efficiency of the sparse information form while yielding
conservative estimates for the robot pose and map.

We have demonstrated the performance of ESEIFs, both in a systematic linear Gaussian simulation as well as on two different
nonlinear datasets. In all three, we have shown that ESEIFs maintain estimates nearly identical to those of the EKF which, in
comparison, are both globally and locally conservative.
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