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Abstract
In this paper, we propose an algorithm that enables robots
to improve their spatial-semantic representation of the en-
vironment by engaging users in dialog. The algorithm aims
to reduce the entropy in maps formulated based upon user-
provided natural language descriptions (e.g., “The kitchen
is down the hallway”). The robot’s available information-
gathering actions take the form of targeted questions intended
to reduce the entropy over the grounding of the user’s descrip-
tions. These questions include those that query the robot’s lo-
cal surround (e.g., “Are we in the kitchen?”) as well as areas
distant from the robot (e.g., “Is the lab near the kitchen?”).
Our algorithm treats dialog as an optimization problem that
seeks to balance the information-theoretic value of candidate
questions with a measure of cost associated with dialog. In
this manner, the method determines the best questions to ask
based upon expected entropy reduction while accounting for
the burden on the user. We evaluate the entropy reduction
based upon a joint distribution over a hybrid metric, topolog-
ical, and semantic representation of the environment learned
from user-provided descriptions and the robot’s sensor data.
We demonstrate that, by asking deliberate questions of the
user, the method results in significant improvements in the
accuracy of the resulting map.

Introduction
Robots are increasingly being deployed in human-occupied
environments. In order to be effective partners, robots need
to reason over representations of these environments that
model the spatial, topological, and semantic properties (e.g.,
room types and names) that people associate with their envi-
ronment. An efficient means of formulating these represen-
tations is through a guided tour in which a human provides
natural language descriptions of the environment (Zender
et al. 2008; Hemachandra et al. 2011; Walter et al. 2013;
Hemachandra et al. 2014). With these approaches, the robot
takes a passive role whereby it infers information from the
descriptions that it fuses with its onboard sensor stream.

The challenge to learning is largely one of resolving the
high-level knowledge that language conveys with the low-
level observations from the robot’s sensors. The user’s de-
scriptions tend to be ambiguous, with several possible in-
terpretations (groundings) for a particular environment. For
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The kitchen is 
down the hall

Is the kitchen 
behind me?

Figure 1: A user giving a tour to a robotic wheelchair de-
signed to assist residents in a long-term care facility.

example, the user may describe the location of the kitchen
as being “down the hall,” yet there may be several hallways
nearby, each leading to a number of different rooms. Fur-
thermore, language grounding typically requires a complete
map, however the robot may not yet have visited the regions
that the user is referring to. It may be that the user is describ-
ing a location known to the robot or a new location outside
the field-of-view of its sensors.

Rather than try to passively resolve the ambiguity in
the inferred map, the robot can take active information-
gathering actions. These may take the form of physical ex-
ploration of the environment or, as we consider in this pa-
per, targeted questions asked of the user. There are several
challenges to using dialog in order to improve the accu-
racy of the inferred map in an effective manner. The first
involves context. It would be beneficial if the algorithm was
not restricted to questions that query the robot’s current lo-
cation. However, asking the user about temporally and spa-
tially distant locations necessitates that the questions pro-
vide the user with sufficient context. Second, the questions
should be structured in such a way that the answers are as in-
formative as possible. Third, it is important that the method
accounts for the social cost incurred by engaging the user in
dialog, for example, by not asking too many questions.

In this paper, we consider the scenario in which a robot
acquires an environment model through a guided tour (Wal-



ter et al. 2013; Hemachandra et al. 2014), where the hu-
man shows the robot around the environment while provid-
ing natural language descriptions. During the tour, the robot
maintains a distribution over the semantic graph, which
is a metric, topological and semantic representation of the
environment, using a Rao-Blackwellized particle filter. At
each timestep, the robot decides between actions that ei-
ther follow the guide or that ask a question to improve
its representation. We formulate the decision process as a
QMDP (Littman, Cassandra, and Kaelbling 1995), where
we evaluate actions as a Markov Decision Process (MDP)
for each possible configuration of the world (particle), and
select the best action using the QMDP heuristic. This al-
lows us to balance the information gained by asking ques-
tions of the user with their associated cost. The algorithm
reasons over the natural language descriptions and the cur-
rent learned map to identify the (possibly null) question that
best reduces ambiguity in the map. The algorithm consid-
ers egocentric and allocentric binary (yes/no) questions that
consist of spatial relations between pairs of regions. These
regions may be local to the robot in the case of situated dia-
log (e.g., “Are we in the kitchen?”, “Is the lab on my right?”)
or distant in the case of non-situated dialog (e.g., “Is the
lounge next to the conference room?”). We associate with
each question a cost that reflects the burden on the user and
a reward based on the information gain for each possible an-
swer. The algorithm selects the best action based upon the
expected Q value using the QMDP formulation.

We demonstrate that this question asking policy reduces
the ambiguity in natural language descriptions and, in turn,
results in semantic maps of the environment that are more
accurate than the current state-of-the-art.

Related Work
Several approaches exist that construct semantic environ-
ment models using traditional robot sensors (Kuipers 2000;
Zender et al. 2008; Hemachandra et al. 2011; Pronobis and
Jensfelt 2012), while others have looked at additionally inte-
grating natural language descriptions to improve the seman-
tic representations (Walter et al. 2013; Williams et al. 2013;
Hemachandra et al. 2014). With most of these techniques,
however, the robot only passively receives observations,
whether they are from traditional sensors or user-provided
descriptions.

Related work exists that endows robots with the abil-
ity to ask questions of the user in the context of follow-
ing guided tours (Kruijff et al. 2006) and understanding a
user’s commands (Deits et al. 2013). Kruijff et al. (2006)
outline a question asking procedure mainly to determine ro-
bust room segmentation by asking about the presence of
doorways. However, they do not tackle allocentric descrip-
tions, reason about uncertainty over groundings, maintain
multiple hypothesis, nor reason about entropy. More re-
cently Deits et al. (2013) have looked at question asking
from an information-theoretic perspective in the scenario of
following natural language manipulation commands. They
use an information gain-based evaluation method to evalu-
ate the best questions to ask to reduce the entropy over the
grounding for a given natural language command. However,

the questions they ask are more straightforward, and do not
explicitly provide context to the human. While we use a sim-
ilar information gain metric to drive our approach, we for-
mulate the problem as a decision problem, where the robot
has to decide between continuing the tour or interrupting the
tour to ask a question. Furthermore, Deits et al. (2013) do
not reason over when to ask the questions, since they im-
mediately follow the corresponding command. In our case,
a question can simultaneously refer to areas that the user de-
scribed at distant points in time. This necessitates that we
consider when it is most meaningful to ask the question and
that it be phrased in a manner that provides sufficient con-
text. Our expected information gain metric is similar to the
work of Stachniss, Grisetti, and Burgard (2005), who de-
cides the best exploration-based motion actions to improve
the entropy over the map.

Semantic Graph Representation
Spatial-Semantic Representation
We define the semantic graph (Hemachandra et al. 2014) as a
tuple containing topological, metric and semantic represen-
tations of the environment. The topology Gt is composed of
nodes ni that denote the robot’s trajectory through the en-
vironment (with a fixed 1 m spacing) and edges that denote
connectivity. We associate with each node a set of observa-
tions that include laser scans zi, semantic appearance ob-
servations ai based on laser li and camera ii models, and
available language observations λi ∈ Λ. We assign nodes
to regions Rα = {n1, .., nm} that represent spatially coher-
ent areas in the environment intended to be compatible with
human concepts (e.g., rooms and hallways).

The vector Xt consisting of the pose xi of each node ni
constitutes the metric map, which takes the form of a pose
graph (Kaess, Ranganathan, and Dellaert 2008) according to
the structure of the topology. The semantic map Lt is mod-
eled as a factor graph with variables that represent the type
(e.g., office, lounge) and colloquial name (e.g., “Carrie’s of-
fice”) of each region in the environment. The method infers
this information from observations made from scene classi-
fiers (image and laser) as well as grounding the user’s natural
language descriptions (Hemachandra et al. 2014). In this pa-
per, we consistently segment the regions using spectral clus-
tering (compared to sampling segments in Hemachandra et
al. (2014)). We also use a template-based door detector to
segment regions.

Grounding Natural Language Descriptions
We consider two broad types of natural language descrip-
tions provided by the guide. Egocentric descriptions that in-
volve the robot’s immediate surround are directly grounded
to the region in which the description was provided. Allo-
centric descriptions that provide information about distant
regions require more careful handling.

We parse each natural language command into its corre-
sponding Spatial Description Clauses (SDCs), a structured
language representation that includes a figure, a spatial rela-
tion and possibly a landmark (Tellex et al. 2011). For exam-
ple, the allocentric description “the lounge is down the hall-



way,” results in an SDC in which the figure is the “lounge,”
the spatial relation is “down from,” and the landmark is the
“hallway”. With egocentric descriptions, the landmark or
figure are implicitly the robot’s current position.1

Algorithm 1: Semantic Mapping Algorithm
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P

(i)
t−1

}
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}
1) Update Particles with odometry and sensor data.

for i = 1 to n do
1. Employ proposal distribution to propagate the

graph sample based on ut, λt and at.
(a) Segment regions
(b) Sample region edges
(c) Merge newly connected regions

2. Update the Gaussian distribution over the node
poses X(i)

t conditioned on topology.
3. Reevaluate language groundings and answered

question and update the semantic layer Lt.
4. Update particle weights.

end
2.) Normalize weights and resample if needed.
3.) Evaluate action costs and carry out minimum cost
action.

In order to ground each expression, the algorithm first
identifies regions in the map that may correspond to
the grounding based upon their semantic label likelihood.
We normalize these likelihoods to compute the landmark
grounding probability for each of these regions

p(γl = Rj) =
p(φlRj

= T)∑
Rj

p(φlRj
= T)

, (1)

where γl is the landmark region grounding and φlRj
denotes

the binary correspondence variable that specifies whether re-
gionRj is the landmark. For each potential landmark region,
the algorithm then calculates the likelihood that each region
in the map corresponds to the figure based on a model for the
spatial relation SR. We arrive at the overall figure grounding
likelihood by marginalizing over the landmarks

p(φfRi
= T) =

∑
Rj

p(φfRi
= T|γl = Rj , SR) p(γl = Rj),

(2)

1We make the assumption that the descriptions are provided
with respect to the robot’s reference frame and not the user’s.

where φfRi
is the correspondence variable for the figure. We

normalize these likelihoods for each potential figure region

p(γf = Ri) =
p(φfRi

= T)∑
Ri

p(φfRi
= T)

. (3)

This expresses the likelihood of the correspondence variable
being true for each figure region Rj in the factor graph in
the semantic layer. However, when there is uncertainty over
the landmark or figure grounding, the likelihood of the label
associated with the figure region can become diluted.

In our previous approaches (Walter et al. 2013;
Hemachandra et al. 2014), we commit to a description once
the likelihood of its grounding exceeds a threshold. We im-
prove upon this in this paper by continuously re-grounding
the language when relevant regions of the map change.
These changes can be in the form of updates to the metric
position of the figure or landmark regions (e.g., due to a loop
closure), or new potential landmark or figure regions being
visited and added to the map.

Algorithm
Algorithm 1 outlines the process by which robot updates its
representation and decides on the optimal action. At each
time step, the system integrates the odometry and sensor in-
formation to update the distribution over the semantic graph.
This includes reevaluating the language descriptions and an-
swers to questions from the guide. Then, the algorithm eval-
uates the cost of each valid (possibly null) dialog action, and
executes the one with the highest expected Q value. The fol-
lowing section elaborates on our action selection procedure.

Action Selection
In this section, we outline the action selection procedure em-
ployed by the algorithm. We treat the guided tour as an MDP,
with associated costs for taking each action. These actions
include following the person, staying in place, and asking
a particular question. We define an additional set of ques-
tion asking actions dependent on the current number of al-
locentric descriptions provided by the guide. We introduce
a cost function for these question asking actions based upon
the expected information gain for each question as well as a
measure of social burden.

We define the state St+1 as a tuple of {P (i)
t , at, z

a
t },

where P (i)
t is particle i at time t, at is the action taken, and

zat is the resulting observation. For a single particle, we de-
fine the Q value as

Q(St, at) =
∑
St+1

γV (St+1)× p(St+1|St, at)− C(at)

=
∑
St+1

γE(V (St+1))− C(at),
(4)

where the value of St+1

V (St+1) = F(I(at)) (5)
is a function of the information gain, and the cost of question
asking action at

C(at) = F(f(at)) (6)



is a function of the feature set of each action. We use a dis-
counting factor γ = 1.

At each time step, the robot takes the best action aBt from
the available set of actions using the QMDP heuristic.

aBt = arg max
at

∑
St

p(St)Q(St, at), (7)

where p(St) is the particle weight w(i)
t .

Action Set
The action set consists of the “Follow Person” action AF ,
“Stay-In-Place” actionAS , and the valid set of question ask-
ing actions. The “Follow Person” action AF is available at
all times except when the robot is waiting for an answer to
a question, when only AS is available for selection. We de-
rive our questions from a templated set for each grounding
entity in a natural language description. These templates can
be categorized into two basic types.

I The simple template takes a spatial relation from the set
of spatial relations (near, away, in front, behind, left of,
right of) and a grounding variable to create a question
of the type “Is the kitchen in front of me?”. For such
questions, the possible answers are “yes,” “no,” and “in-
valid” (for questions that do not make sense given a spa-
tial entity).

II The more complex template defines questions in terms
of spatial relations between non-local locations in the
environment. If the robot is highly confident of the se-
mantic label of a particular location, it could generate
a question about regions close to that entity to resolve
uncertainty. For example, when the robot is uncertain
about the location of the “lounge,” but thinks one pos-
sibility is the space in front of the “conference room,”
while several are not, it could ask “Is the lounge in front
of the conference room?”.

The robot can only use questions of the first type to ask
about spatial regions in its immediate vicinity. As such, the
ability to receive useful information is limited to instances
when the robot is near a potential hypothesized location.
Questions of the second type allow the robot to reduce its un-
certainty even when a hypothesized location is not within its
immediate vicinity. However, this may place a higher men-
tal burden on the user who must then reason about spatial
entities outside their immediate perception range.

Value Function
We define the value of the next state as a linear function of
the information gain for each action. We define the next state
St+1 as the question and answer pair. Each next state is as-
signed a value based on the information gain for the related
language grounding. Since there is a distribution over the set
of answers that could be received for a given question, we
evaluate the expected likelihood of transitioning to a partic-
ular state given a question. The likelihood of transitioning to
each state is the likelihood of receiving a particular answer
given the question.

Information Gain The information gain I(a, za) for ac-
tion a, as shown in Equation 8 is defined as the reduction in
entropy by taking action a and receiving observation za. In
our framework, the entropy is over a grounding variable γf
created for a natural language description provided by the
guide. Calculating the exact entropy is infeasible since the
map might not yet be complete, and also because it is ineffi-
cient to calculate the likelihood of some spatial regions that
are too far outside the local area. Therefore, we approximate
the distribution based on the spatial regions considered dur-
ing the language grounding step for the language descrip-
tion.

I(a, za) = H(γf |Λ)−H(γf |Λ, a, za) (8)
In this paper, we concentrate on questions that can result

in a discrete set of answers. This allows us to better model
the expected change in entropy given the answer to the ques-
tion (unlike an open ended answer which could be drawn
from a large space of possible answers). However, in gen-
eral, we can use the same approach for open ended ques-
tions as long as we can evaluate the expected information
gain from these questions.

Given the answer, we evaluate the change it has on the
distribution over the particular grounding variable. For most
spatial relations, we define a range over which a particular
question can be applied in a meaningful manner. For exam-
ple, we only consider regions within a 20 m distance when
evaluating a question. As such, we limit the entropy calcula-
tion to the regions for which the question is expected to be
meaningful.

p(γf = Ri|Λ, a, za) =
p(za|a,Ri)× p(γf = Ri|Λ)∑
Ri

p(za|a)× p(γf = Ri|Λ)
(9)

The expected value of the next state is based on the transition
function from the current state to the next state.

E(V (St+1)) =
∑
zaj

F(I(a|zaj ))× p(zaj |St, a) (10)

For the action AF , we assume that there is no change in
the entropy as we are not modeling the expected change in
the language groundings based on spatial exploration. Thus,
the Q value for AF is only the cost of the action.

Transition Likelihood
The transition function is the likelihood of receiving each
answer given the state and the question asking action. We
arrive at this value by marginalizing out the grounding vari-
able. This results in a higher expected likelihood of receiv-
ing a particular answer if there were spatial regions that had
a high likelihood of being the grounding and also fit the spa-
tial relation in the question.

p(zaj |St, a) =
∑
Ri

p(zaj |St, Ri, a)× p(Ri|Λ) (11)

Cost Function Definition
We define a hand-crafted cost function that encodes the de-
sirability of asking a given question at each timestep. The



cost of each question asking action is a function of several
relevant features. For this implementation, we have used the
following:

i Time since last question asked
ii Time since last question asked about grounding

iii Number of questions asked about entity
In our current implementation, we use a linear combina-

tion of these features to arrive at a reasonable cost function.
The weights have been set such that they result in negligible
burden on the user and do not impeded the conducting of
the tour. Ideally, these weights would be learned from user
preferences based upon human trials.

For the person following action AF , we assign a fixed
cost such that only a reasonably high expected information
gain will result in a question being asked. The value was set
empirically to achieve a reasonable level of questions.

Integrating Answers to the Representation
We couple each of the user’s answers with the original ques-
tion to arrive at an equivalent natural language description of
the environment. However, since the question is tied to a par-
ticular spatial entity, we treat the question and answer pair
together with the original description, according to Equa-
tion 9. As such, each new answer modifies the distribution
over that grounding variable, and any informative answer
improves the robot’s representation.

When new valid grounding regions are added, we reeval-
uate both the original description as well as the likelihood of
generating the received answer for each new region, and up-
date the language grounding. Figure 2 shows the grounding
likelihoods before and after asking three questions.

Results
We evaluate our algorithm on an indoor dataset in which a
human gives a robotic wheelchair (Fig. 1) (Hemachandra et
al. 2011) a narrated tour of MIT’s Stata Center building. For
this experiment, we inject three natural language descrip-
tions at locations where the descriptions are ambiguous. We
ran the algorithm on the dataset and a human provided an-
swers to the questions. We outline the resulting semantic
map and compare it with a semantic map that does not in-
tegrate language, and one that integrates language but does
not ask questions of the guide.

Overall, the dataset contains six descriptions of the robot’s
location that the algorithm grounds to the current region, and
three allocentric expressions that describe regions with rela-
tion to either landmarks in the environment (e.g., “the eleva-
tor lobby is down the hall”) or to the robot (e.g., “the lounge
is behind you”). The robot asked a total of five questions of
the guide, four of which were in relation to itself, and one in
relation to a landmark in the environment. In this experiment
we ran the algorithm with one particle.

As can be seen in Table 1, the semantic map that results
from integrating the answers received from the guide has
much less uncertainty (and lower entropy) over the figure
groundings. For all three descriptions, the robot was able to
significantly reduce the entropy over the figure groundings
by asking one to three questions each.

The lounge is down 
the hallway

0.76 (0.12)

Q1

Q2

Q3

0.00 (0.11)

0.00 (0.09)0.00 (0.24)

0.00 (0.15)

0.22 (0.09)

0.02 (0.11)

Conference
 Room

Elevator lobby
Office
Lab

Conference Room
Kitchen
Lounge

Hallway

Conference
Room

Figure 2: Language groundings for the expression “The
lounge is down the hall”. Grounding likelihood with ques-
tions is in black and without questions in red. Questions
asked (and answers), Q1: “Is the lounge near the conference
room?” (“Yes”); Q2: “Is the lounge on my right?” (“No”);
Q3: “Is the lounge behind me?” (“Yes”). The ground truth
region boundary is in red. Pie charts centered in each region
denote its type while path color denotes different regions.

The elevator lobby  
is down the hallway

0.90 (0.17)

Q1

0.00 (0.41)

0.10 (0.21)

Lab0.00 (0.20)

Figure 3: Language groundings for the expression “The el-
evator lobby is down the hall”. Grounding likelihood with
questions is shown in black and without questions in red.
Question asked (and answer), Q1: “Is the elevator lobby near
me?” (“No”). The ground truth region is outlined in red.

Conclusion
We outlined a framework that enables robots to engage a
human in dialog in order to improve its learned semantic
map during a guided tour. We provided an initial demonstra-
tion of its ability to successfully reduce uncertainty over the
groundings for natural language descriptions.



Table 1: Entropy over figure groundings with and without questions
Entropy

Language Event Without Questions With Questions No. of Questions
“The lounge is down the hallway” (Fig. 2) 2.015 0.620 3
“The elevator lobby is down the hallway” (Fig. 3) 1.320 0.325 1
“The lounge is behind you” (Fig. 4) 0.705 0.056 1

The lounge is 
behind you

0.99 (0.61)

Q1

0.01 (0.01)

0.00 (0.39)

Figure 4: Language groundings for the expression “The
lounge is behind you”. Grounding likelihood with questions
is shown in black and without questions in red. Question
asked (and answer), Q1: “Is the lounge near me?” (“Yes”).
The ground truth region is outlined in red.

Going forward, we plan to conduct extensive experiments
both on collected datasets as well as through live trials to
assess both the effectiveness of the approach over diverse
settings as well as the human factors aspect of this interac-
tive tour model. We also plan to extend the current approach
to ask additional types of questions that can provide more
information than simple yes/no type questions.

A drawback of the current approach is that the system
does not account for the likelihood that the figure to which a
question refers may correspond to a yet unvisited, and thus
unknown, part of the environment. A more comprehensive
approach would be to model the likelihood that figure ref-
erences ground to unvisited regions in the environment, and
evaluate the affect of the questions on these regions as well.

The current framework only considers questions that re-
duce the entropy over language groundings. However, as the
robot integrates semantic information from other sources,
such as room appearance classifiers and object detectors, it
would be beneficial to ask questions about spatial regions
even in the absence of language. For example, upon observ-
ing a computer monitor, it could ask whether it is in an office.

There are a number of extensions that could be carried out
to enhance this framework such that it expands the scope of

actions available to the robot to improve its model of the
world. Currently, the framework only allows the robot to
take exploration actions by asking questions. We could ex-
pand the scope of actions available to the robot by including
navigation, such that the robot can actively explore the en-
vironment (possibly after the tour) to reduce its uncertainty
over the space of entities described during the tour.
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