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Abstract—In this paper, we propose an algorithm that enables
a voice-commandable wheelchair to learn a semantic model of a
user’s environment by engaging them in dialog. The algorithm
reduces the entropy in maps formulated based upon user-
provided natural language descriptions (e.g., “The kitchen is
down the hallway”). The robot’s available information-gathering
actions take the form of targeted questions intended to reduce
the entropy over the grounding of the user’s descriptions. These
questions include those that query the robot’s local surround (e.g.,
“Are we in the kitchen?”) as well as areas distant from the robot
(e.g., “Is the lab near the kitchen?”). Our algorithm treats dialog
as an optimization problem that seeks to balance information-
theoretic value of candidate questions with a measure of cost
associated with dialog. In this manner, the method determines the
best questions to ask based upon expected entropy reduction while
accounting for the burden on the user. We evaluate the entropy
reduction based upon a joint distribution over a hybrid metric,
topological, and semantic representation of the environment
learned from user-provided descriptions and the robot’s sensor
data. We demonstrate that, by asking deliberate questions of
the user, the method results in significant improvements in the
accuracy of the resulting map.

I. INTRODUCTION

The Boston Home (TBH) is a long-term assisted living res-
idence in Boston, Massachusetts USA for adults with multiple
sclerosis (MS) and other progressive neurological disorders.
TBH has approximately 100 residents who, like others living
with MS, are inhibited in their ability to move about and
interact with their environment. MIT has worked together with
TBH to develop and deploy a variety of assistive technologies
in an effort to improve the quality of life of its residents. These
include a localization system that uses the facility’s existing
WiFi infrastructure to monitor the safety and location of the
residents [1, 2], and dialog interfaces [3, 4] that allow residents
to use speech to request information (e.g., regarding daily
events or weather), make phone calls, and send e-mail [5].

The majority of TBH residents require power wheelchairs
to move within and on the grounds of the facility. The
way in which users drive their wheelchairs depends upon
their physical capabilities. Residents often use hand-operated
joysticks initially, but, as their muscular control deteriorates, so
does their ability to accurately steer their chair. Head-actuated
switches and sip and puff arrays offer safer alternatives,
but reduce the user’s level of control, significantly impact
operating speeds, and can be physically taxing. Taking advan-
tage of advancements in robot navigation, semi-autonomous
wheelchairs [6, 7, 8] seek to overcome these limitations by
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Fig. 1. A staff member gives a robotic wheelchair a tour of The Boston
Home, a long-term care residence for adults with neurological diseases.

augmenting a user’s ability with automatic wall following and
obstacle avoidance through a shared control interface.

While a resident’s motor skills may deteriorate, many
afflicted with MS and similar neurological disorders retain
the ability to speak, albeit with potentially significant speech
pathologies. Building on our lab’s earlier work in automatic
speech recognition (ASR) [9] and language understanding [10],
we developed a voice-commandable autonomous wheelchair
(Fig. 1) that enables users to navigate simply by instructing
their wheelchair using natural language speech (e.g., “take me
to the room across from the nurse’s station”).

In order to understand these natural language instruc-
tions, the wheelchair needs to reason over environment rep-
resentations that model the spatial, topological, and semantic
properties (e.g., room types and names) that users associate
with their environment. An effective means of sharing this
knowledge with the wheelchair is for a staff member to lead
the wheelchair on a guided tour (Fig. 1), using natural language
speech to describe the environment [11, 12, 13, 14]. With these
approaches, the robot takes a passive role, whereby it infers
information from descriptions and its onboard sensor stream.

The challenge to learning is largely one of resolving the
high-level knowledge that language conveys with the low-level
observations from the robot’s sensors. The guide’s descriptions
tend to be ambiguous, with several possible interpretations
(groundings) for a particular environment. For example, the
guide may describe the location of the kitchen as being “down



the hall,” yet there may be several hallways nearby, each
leading to a number of different rooms. Furthermore, language
grounding typically requires a complete map, however the
robot may not yet have visited the regions that the guide is
referring to. It may be that the guide is describing a location
known to the robot or a new location outside the field-of-view
of its sensors.

Rather than try to passively resolve the ambiguity in the
inferred map, the robot can take active information-gathering
actions, either physically exploring the environment or, as we
consider in this paper, asking questions of the guide. There
are several challenges to using dialog in order to improve the
accuracy of the inferred map in an effective manner. The first
involves context. It would be beneficial if the algorithm was not
restricted to questions that query the robot’s current location.
However, asking the guide about temporally and spatially
distant locations necessitates that the questions provide the
guide with sufficient context. Second, the questions should be
structured in such a way that the answers are as informative
as possible. Third, it is important that the method accounts for
the social cost incurred by engaging the guide in dialog, for
example, by not asking too many questions.

This paper considers the scenario in which the wheelchair
acquires a model of the world through a guided tour [13, 14],
where a human shows the robot around the facility while
providing natural language descriptions. During the tour, the
robot maintains a distribution over the semantic graph, which
is a metric, topological and semantic representation of the
environment, using a Rao-Blackwellized particle filter [13].
The robot also decides between an action that either follows
the guide or asks a question to improve its representation. We
formulate the decision process as a QMDP [15], where the
actions are evaluated as a Markov Decision Process (MDP)
for each possible configuration of the world (particle), and the
best action is selected using the QMDP heuristic. This allows
us to balance the information gained by asking questions of
the guide with the cost of each action. The algorithm reasons
over the natural language descriptions and the current learned
map to identify the (possibly null) question that best reduces
the ambiguity in the map. The algorithm considers egocentric
and allocentric binary (yes/no) questions that consist of spatial
relations between pairs of regions. These regions may be local
to the robot in the case of situated dialog (e.g., “Are we in
the kitchen?”, “Is the nurse’s station on my right?”) or distant
in the case of non-situated dialog (e.g., “Is the lounge next
to the kitchen?”). We assign a cost to each action based on
the interaction and a reward based on the information gain
for each possible answer. The algorithm then selects the best
action using the expected Q value of each action using the
QMDP formulation.

We demonstrate that this question asking policy reduces the
ambiguity in natural language descriptions and, in turn, results
in semantic maps of the environment that are more accurate
than the current state-of-the-art.

II. RELATED WORK

Several approaches exist that construct semantic environ-
ment models using traditional robot sensors [11, 12, 16], while
others have looked at also integrating natural language descrip-
tions to improve the semantic representations [13, 17, 14]. With
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Fig. 2. The prototype robotic wheelchair.

most of these techniques, however, the robot only passively
receives observations, whether they are from traditional sensors
or user-provided descriptions.

Related work exists that endows robots with the ability to
ask questions of a human in the context of following guided
tours [18] and understanding the user’s commands [19]. Krui-
jff et al. [18] outline a procedure that asks about the presence of
doorways in order to more robustly segment the environment.
However, their work is limited to egocentric utterances and
does not account for ambiguity in the descriptions. More
recently, Deits et al. [19] have looked at asking questions in the
context of following natural language manipulation commands.
They use an information gain-based metric to evaluate the
best questions to ask in order to reduce the entropy over the
grounding for a given command. However, the questions they
ask are more straightforward and do not explicitly provide
context to the human. While we use a similar information
gain metric to drive our approach, we formulate the problem
as a decision problem, where the robot has to decide between
continuing the tour or interrupting the tour to ask a question.
Furthermore, Deits et al. [19] do not reason over when to ask
the questions, since they immediately follow the corresponding
command. In our case, a question can refer to areas that the
guide described at distant points in time. This necessitates that
we consider when it is most meaningful to ask the question and
that it be phrased in a manner that provides sufficient context.

III. THE WHEELCHAIR PLATFORM

Based upon our interactions with clinicians and residents
at TBH, we built a prototype robotic wheelchair (Fig. 2), by
taking an off-the-shelf power wheelchair and adding circuitry
to control its drive motors and sensors to perceive its surround.
The platform is equipped with two Hokuyo UTM-30LX planar
LIDARs, both with horizontal scanning planes. The forward-
facing LIDAR is positioned a few inches off the ground to
observe building structure (e.g., for mapping), obstacles, and
people in front of the robot. The robot employs this sensor
to detect and track the location of the staff member who is
conducting the tour. The rearward-facing LIDAR is positioned
slightly higher and is used to detect walls and obstacles. Ad-
ditional exterocpetive sensing includes three cameras mounted
approximately 1 m above the ground, which provide a nearly
180 degree field-of-view in front of the wheelchair. These
cameras as well as the LIDARs allow the robot to identify a



region’s type (e.g., hallway, lounge, etc.) based upon its image-
space appearance and local structure. A directional microphone
located near the cameras enables the wheelchair to receive
spoken commands from users as well as descriptions that the
tour guide provides1. The wheelchair uses a speaker to engage
in dialog, notably to ask questions of the tour guide.

IV. SEMANTIC GRAPH REPRESENTATION

A. Spatial-Semantic Representation

We define the semantic graph [13] as a tuple containing
topological, metric and semantic representations of the envi-
ronment. The topology Gt is composed of nodes ni that denote
the robot’s trajectory through the environment (sampled at a
fixed 1 m spacing) and edges that represent connectivity. We
associate with each node a set of observations that include laser
scans zi, semantic appearance observations ai based on laser li
and camera ii models, and available language observations λi.
We assign nodes to regions Rα = {n1, .., nm} that represent
spatially coherent areas in the environment intended to be
compatible with human concepts (e.g., rooms and hallways).

The vector Xt consisting of the pose xi of each node ni
constitutes the metric map, which takes the form of a pose
graph [20] according to the structure of the topology. The
semantic map Lt is modeled as a factor graph with variables
that represent the type Cr (e.g., resident’s room, lounge)
and label Λr (e.g., “John’s room”) for each region r in the
environment. This information is inferred from observations
made from scene classifiers (image and laser) as well as
by grounding the guide’s natural language descriptions [13].
In this paper, we consistently segment groups of nodes into
regions using spectral clustering (compared to sampling seg-
ments in Hemachandra et al. [14]). We also use a template-
based door detector to segment regions.

B. Grounding Natural Language Descriptions

We consider two broad types of natural language descrip-
tions provided by the guide. Egocentric descriptions that refer
to the robot’s immediate surround are directly grounded to
the region in which the description was provided. Allocentric
descriptions that provide information about distant regions
require more careful handling.

We parse each natural language command into its cor-
responding Spatial Description Clauses (SDCs), a structured
language representation that includes a figure, a spatial relation
and possibly a landmark [10]. For example, the allocentric
description “the lounge is down the hallway,” results in an SDC
in which the figure is the “lounge,” the spatial relation is “down
from,” and the landmark is the “hallway.” With egocentric
descriptions, the landmark or figure are implicitly the robot’s
current position.2

The algorithm grounds the expression by inducing a dis-
tribution over the figure’s location. It does so by treating the
location of the landmark as a latent variable, calculating the
normalized likelihood that a region Rj is the landmark based

1The guide can also speak to the wheelchair using a wireless, head-worn
microphone

2We make the assumption that the descriptions are provided with respect
to the robot’s reference frame and not that of the guide.

Algorithm 1: Semantic Mapping Algorithm
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1) Update Particles with odometry and sensor data.

for i = 1 to n do
1) Employ proposal distribution to propagate the

graph sample based on ut, λt and at.
a) Segment regions
b) Sample region edges
c) Merge newly connected regions

2) Update the Gaussian distribution over the node
poses X(i)

t conditioned on topology.
3) Reevaluate language groundings and answered

question and update the semantic layer Lt.
4) Update particle weights.

end
2.) Normalize weights and resample if needed.
3.) Evaluate action costs and carry out minimum cost
action.

upon that region’s label distribution according to the semantic
map

p(γl = Rj) =
p(φlRj

= T)∑
Rj

p(φlRj
= T)

, (1)

where γl is the region that the description’s landmark refer-
ence grounds to, and φlRj

denotes the binary correspondence
variable that specifies whether region Rj is the landmark. For
every potential landmark, the algorithm then calculates the
likelihood of each region in the map as being the corresponding
figure based on a model for the spatial relation SR. We arrive
at the overall likelihood that this region is the figure grounding
by marginalizing over the landmarks

p(φfRi
= T) =

∑
Rj

p(φfRi
= T|γl = Rj , SR) p(γl = Rj), (2)

where φfRi
is the correspondence variable for the figure. We

normalize these likelihoods for each potential figure region

p(γf = Ri) =
p(φfRi

= T)∑
Ri

p(φfRi
= T)

. (3)

This expresses the likelihood of the corresponding variable
being true for each figure region Rj in the factor graph in
the semantic layer. However, when there is uncertainty over
the landmark or figure grounding, the likelihood of the label
associated with the figure region can become diluted.

In our previous approaches [13, 14], we commit to a
description once the likelihood of its grounding exceeds a pre-
specified threshold. In this paper, we improve upon this by
continuously re-grounding the language when relevant regions
of the map change. These changes could be in the form of



updates to the metric position of the figure or landmark regions
(e.g., due to a loop closure), or new potential landmark or
figure regions being visited and added to the map.

V. LEARNING FROM DIALOG

Algorithm 1 outlines the process by which robot updates
its representation and decides on the optimal action. At each
time step, the system integrates the odometry and sensor
information to update the distribution over semantic graphs.
This includes reevaluating the language descriptions and an-
swers received for questions asked from the guide. Then,
the algorithm evaluates the cost of each valid dialog action,
and executes the one with the highest expected Q value. The
following section elaborates on our action selection procedure.

A. Action Selection

In this section, we outline the action selection procedure
employed by the algorithm. We treat the guided tour as an
MDP, with associated costs for taking each action. These
actions include following the person, staying in place, and
asking a particular question. We define an additional set of
question asking actions dependant on the current number of
allocentric descriptions provided by the guide. We introduce
a cost function for these question asking actions based upon
the expected information gain for each question as well as a
measure of social burden.

We define the state St+1 as a tuple of {P (i)
t , at, z

a
t }, where

P
(i)
t is particle i at time t, at is the action taken, and zat is

the resulting observation. For a single particle, we define the
Q value as

Q(St, at) =
∑
St+1

γV (St+1)× p(St+1|St, at)− C(at)

=
∑
St+1

γE(V (St+1))− C(at),
(4)

where the value of St+1,

V (St+1) = F(I(at)), (5)

is a function of the information gain, and the cost of question
asking action at

C(at) = F(f(at)) (6)

is a function of the feature set of each action. We use a
discounting factor γ = 1.

At each time step, the robot takes the best action aBt from
the available set of actions using the QMDP heuristic.

aBt = arg max
at

∑
St

p(St)Q(St, at), (7)

where p(St) is the particle weight w(i)
t .

1) Action Set: The action set consists of the “Follow
Person” action AF , “Stay-In-Place” action AS , and the valid
set of question asking actions. The “Follow Person” action
AF is available at all times except when the robot is waiting
for an answer to a question, when only AS is available for
selection. We derive our questions from a templated set for
each grounding entity in a natural language description. These
templates can be categorized into two basic types:

i Situated questions employ a spatial relation (near, away,
front, behind, left, right) relative to the robot’s pose to
query a region by its label or type (e.g., “Is the kitchen in
front of me?”). The answer can be “yes,” “no,” or “invalid”
(for questions that do not make sense).

ii Non-situated questions consider spatial relations between
two non-local regions, referred to by their label or type
(e.g., “Is the lounge in front of the conference room?”).
The answer can be “yes,” “no,” or “invalid.”

The robot can only use questions of the first type to ask
about regions in its immediate vicinity. As such, the ability
to receive useful information is limited to instances when
the robot is near a potential hypothesized location. Questions
of the second type allow the robot to reduce its uncertainty
even when a hypothesized location is not within its immediate
vicinity. In general, these questions are asked when the robot is
confident about the location of one region but uncertain about
the other. We note that these questions may place a higher
mental burden on the guide, who must then reason about spatial
entities outside their immediate perception range.

2) Value Function: We define the value of the next state
as a linear function of the information gain for each action.
We define the next state St+1 as the question and answer pair.
Each next state is assigned a value based on the information
gain for the related language grounding. Since the answer for a
given question is unknown, we evaluate the expected likelihood
of transitioning to a particular state given a question. The
likelihood of transitioning to each state is the likelihood of
receiving a particular answer given the question.

We define the information gain I(a, za) for action a (8)
the reduction in entropy by taking action a and receiving
observation za. In our framework, the entropy is over a
grounding variable γf created for a natural language descrip-
tion provided by the guide. Calculating the exact entropy
is infeasible since the map might not yet be complete, and
also because it is inefficient to calculate the likelihood of
some spatial regions that are too far outside the local area.
Therefore, we approximate the distribution based on the spatial
regions considered during the language grounding step for the
language description.

I(a, za) = H(γf |Λ)−H(γf |Λ, a, za) (8)

In this paper, we concentrate on questions that can result in
a discrete set of answers. This allows us to better model the
expected change in entropy given the answer to the question
(unlike an open ended answer which could be drawn from a
large space of possible answers).

Given the answer, we evaluate the change it has on the
distribution over the particular grounding variable. For most
spatial relations, we define a range over which a particular
question can be applied in a meaningful manner. For example,
we only consider regions within a 20 m distance when evaluat-
ing a question. As such, we limit the entropy calculation to the
regions for which the question is expected to be meaningful.

p(γf = Ri|Λ, a, za) =
p(za|a,Ri)× p(γf = Ri|Λ)∑
Ri

p(za|a)× p(γf = Ri|Λ)
(9)



The expected value of the next state is based on the transition
function from the current state to the next state

E(V (St+1)) =
∑
zaj

F(I(a|zaj ))× p(zaj |St, a). (10)

For the action AF , we assume that there is no change in
the entropy as we are not modeling the expected change in the
language groundings based on spatial exploration. Thus, the Q
value for AF is only the cost of the action.

3) Transition Likelihood: The transition function captures
the likelihood of receiving each answer, given the state and the
question asking action. We arrive at this value by marginalizing
out the grounding variable. This results in a higher expected
likelihood of receiving a particular answer if there were spatial
regions that had a high likelihood of being the grounding and
also fit the spatial relation in the question.

p(zaj |St, a) =
∑
Ri

p(zaj |St, Ri, a)× p(Ri|Λ) (11)

4) Cost Function Definition: We define a hand-crafted cost
function that encodes the desirability of asking a given question
at each timestep. The cost of each question asking action is a
function of several relevant features. For this implementation,
we have used the following:

i Time since last question asked
ii Time since last question asked about grounding

iii Number of questions asked about entity

In our current implementation, we use a linear combination
of these features to arrive at the cost function. The weights
have been set empirically such that they result in negligible
burden on the guide and do not impeded the conducting of
the tour. Ideally, these weights would be learned from user
preferences based upon human trials.

For the person following action AF , we assign a fixed cost
such that only a reasonably high expected information gain will
result in a question being asked. The value was set empirically
to achieve a reasonable level of questions.

5) Integrating Answers to the Representation: We couple
each of the answers with the original question to arrive at
an equivalent natural language description. However, since the
question was tied to a particular spatial entity, we treat the
question and answer pair together with the original description,
according to Equation 9. As such, each new answer modifies
the distribution over that grounding variable, and any informa-
tive answer improves the map distribution.

When new valid grounding regions are added, we reeval-
uate both the original description as well as the likelihood
of generating the received answer for each new region, and
update the language grounding. Figure 3 shows the grounding
likelihoods before and after asking three questions.

VI. RESULTS

We evaluated our algorithm on an indoor dataset in which
a human gives our wheelchair a narrated tour of MIT’s
Stata Center building. We injected three natural language
descriptions at locations where the descriptions contained a
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Fig. 3. Language groundings for the expression “The lounge is down the
hall.” Grounding likelihood with and without questions is shown in black
and red, respectively. Questions asked (answers), Q1: “Is the lounge near the
conference room?” (“Yes”); Q2: “Is the lounge on my right?” (“No”); Q3: “Is
the lounge behind me?” (“Yes”). The ground truth region boundary is in red.
Pie charts centered in each region denote its type, while path color denotes
different regions.
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Fig. 4. Language groundings for the expression “The elevator lobby is down
the hall.” Grounding likelihood with questions is shown in black and without
questions in red. Question asked (and answer), Q1: “Is the elevator lobby near
me?” (“No”). The ground truth region is outlined in red.

level of ambiguity. We ran the algorithm on the dataset and a
human provided answers to the robot’s questions. We outline
the resulting semantic map and compare it with a semantic
map that did not integrate language, and one that integrated
language but did not ask questions of the guide.

Overall, the dataset contained six descriptions of the robot’s
location that the algorithm grounded to the current region, and
three allocentric expressions that describe regions with relation
to either landmarks in the environment (e.g., “the elevator
lobby is down the hall”), or to the robot (e.g., “the lounge
is behind you”). The robot asked a total of five questions of
the guide, four of which were in relation to itself, and one in
relation to a landmark in the environment.



TABLE I. ENTROPY OVER FIGURE GROUNDINGS WITH AND WITHOUT QUESTIONS

Entropy
Original Description Without Questions With Questions No. of Questions

“The lounge is down the hallway” (Fig. 3) 2.015 0.620 3
“The elevator lobby is down the hallway” (Fig. 4) 1.320 0.325 1
“The lounge is behind you” (Fig. 5) 0.705 0.056 1
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Q1

0.01 (0.01)

0.00 (0.39)

Fig. 5. Language groundings for the expression “The lounge is behind you.”
Grounding likelihood with questions is shown in black and without questions
in red. Question asked (and answer), Q1: “Is the lounge near me?” (“Yes”).
The ground truth region is outlined in red.

As can be seen in Table I, the semantic map that results
from integrating the answers received from the guide exhibits
much less uncertainty (and lower entropy) over the figure
groundings than those for which no questions were asked. For
all three descriptions, the robot was able to significantly reduce
the entropy over the figure groundings by asking one to three
questions each.

VII. CONCLUSION

We are working with The Boston Home to develop a voice-
commandable wheelchair that allows the mobility impaired to
independently move about their environment, without relying
on the assistance of others. In order for the wheelchair to
correctly follow spoken directions, it must reason over the
spatial and semantic properties that users associate with their
environment. This paper proposed a framework that allows
users and caregivers to share this information with the robot
in an efficient, intuitive manner, by leading the wheelchair on a
tour and engaging it in natural language dialog, much like they
would with a new colleague. With this semantic understanding,
users can then command their wheelchair to navigate simply
by speaking to it.

Our approach treats automatic speech recognition (ASR)
and language understanding as separate processes, whereby
we use a continuously-running probabilistic recognizer [9] to
convert audio to the highest likelihood text and then infer the
user’s intention (i.e., desired destination) based on this text.
Such a decoupled approach generally works well for people

with unimpaired speech in acoustically clean environments.
However, people with MS and other neurological conditions
often exhibit speech pathologies, such as rapid fatigue, pro-
longed speaking style, or dysarthria, that are not captured by
the acoustic or language models or in the data used for training.
Hence, standard ASR systems often fail to recognize portions
of the speech, resulting in erroneous text that the language
understanding component will (incorrectly) ground. A better
alternative would be to consider the top N (for some N ) most
likely outputs of the recognizer and the distribution over their
parses when inferring their meaning. This would provide some
robustness to failures in the ASR. The resulting distribution
over groundings would provide a measure of confidence in
the system’s ability to infer the user’s intent that can be used
to decide whether to proceed or to ask clarifying questions
to resolve ambiguity. Our collaborators have recently taken a
similar approach by using dialog for speech-based interfaces
at TBH [4, 5]. Further, the ASR should employ acoustic and
language models that better represent speech pathologies and
should be trained on users with similar speech patterns.

Our system allows users to command their wheelchair to a
desired location by referring to it by its colloquial name, type,
and/or relation to other regions in the environment. It would
be useful if the user were able to convey other intentions,
such as a desire to perform a certain activity. For example,
the user may say “I want to watch television” or “I want
something to eat.” In the case of the former, the wheelchair
would bring the user to the lounge, position them in front of
the television and possibly turn it on. Following commands like
these requires a richer model of the environment that includes
objects, their type, their location and relationship to regions
(i.e., that televisions are commonly found in lounges), and their
utility. Natural language understanding also requires models
that capture the relationship between a particular activity, the
state of the world, and the actions of the robot. For example,
this could be a pre- and post-condition model in which an
activity is defined by a certain allocation of states (post-
condition) and the robot’s actions are a means of satisfying
these post-conditions.

In the context of the current system, we hope to conduct
extensive experiments with a number of different guides, and
TBH users who will then attempt to use the learned maps to
navigate around the facility. This is critical to understanding
the extent to which our framework can model the different
types of information that people typically associate with their
environment. It is also necessary to assess the extent to which
this information allows users to independently navigate within
their residence. We anticipate that the latter will involve close,
on-site collaboration with clinicians and the residents in order
to understand the aforementioned limitations of the ASR and
understanding pipeline. This would be tremendously valuable
for developing a more effective speech-based interface.
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