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Abstract. Natural language provides a flexible, intuitive way for people
to command robots, which is becoming increasingly important as robots
transition to working alongside people in our homes and workplaces. To
follow instructions in unknown environments, robots will be expected to
reason about parts of the environments that were described in the in-
struction, but that the robot has no direct knowledge about. This paper
proposes a probabilistic framework that enables robots to follow com-
mands given in natural language, without any prior knowledge of the
environment. The novelty lies in exploiting environment information im-
plicit in the instruction, thereby treating language as a type of sensor
which is used to formulate a prior distribution over the unknown parts
of the environment. The algorithm then uses this learned distribution to
infer a sequence of actions that are most consistent with the command,
updating our belief as we gather more metric information. We evaluate
our approach through simulation as well as experiments on two mobile
robots; our results demonstrate the algorithm’s ability to follow naviga-
tion commands with performance comparable to that of a fully-known
environment.

1 Introduction

Robots are increasingly performing collaborative tasks with people at home,
in the workplace, and outdoors, and with this comes a need for efficient com-
munication between human and robot teammates. Natural language offers an
effective means for untrained users to control complex robots, without requiring
specialized interfaces or extensive user training. Enabling robots to understand
natural language instructions would facilitate seamless coordination in human-
robot teams. However, interpreting instructions is a challenge, particularly when
the robot has little or no prior knowledge of its environment. In such cases, the
robot should be capable of reasoning over the parts of the environment that are
relevant to understanding the instruction, but may not yet have been observed.

? The first four authors contributed equally to this paper.
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(d) This process repeats as the robot ac-
quires new observations, refining its belief.

Fig. 1. Visualization of one run for the command “go to the hydrant behind the cone,”
showing the evolution of our beliefs (the possible locations of the hydrant) over time.

Oftentimes, the command itself provides information about the environment
that can be used to hypothesize suitable world models, which can then be used
to generate the correct robot actions. For example, suppose a first responder
instructs a robot to “navigate to the car behind the building,” where the car
and building are outside the robot’s field-of-view and their locations are not
known. While the robot has no a priori information about the environment,
the instruction conveys the knowledge that there is likely one or more buildings
and cars in the environment, with at least one car being “behind” one of the
buildings. The robot should be able to reason about the car’s possible location,
and refine its prior as it carries out the command (e.g., update the car’s possible
location when it observes a building).

This paper proposes a method that enables robots to interpret and execute
natural language commands that refer to unknown regions and objects in the
robot’s environment. We exploit the information implicit in the user’s command
to learn an environment model from the natural language instruction, and then
solve for the policy that is consistent with the command under this world model.
The robot updates its internal representation of the world as it makes new metric
observations (such as the location of perceived landmarks) and updates its policy
appropriately. By reasoning and planning in the space of beliefs over object
locations and groundings, we are able to reason about elements that are not



Inferring Maps and Behaviors from Natural Language Instructions 3

initially observed, and robustly follow natural language instructions given by a
human operator.

More specifically, we describe in our approach (Section 3) a probabilistic
framework that first extracts annotations from a natural language instruction,
consisting of the objects and regions described in the command and the given
relations between them (Fig. 1(a)). We then treat these annotations as noisy
sensor observations in a mapping framework, and use them to generate a dis-
tribution over a semantic model of the environment which also incorporates
observations from the robot’s sensor streams (Fig. 1(b)). This prior is used to
ground the actions and goals from the command, resulting in a distribution over
desired behaviors. This is then used to solve for a policy which yields an action
that is most consistent with the command, under the map distribution so far
(Fig. 1(c)). As the robot travels and senses new metric information, it updates
its map prior and inferred behavior distribution, and continues to plan until it
reaches its destination (Fig. 1(d)).

We evaluate our algorithm in Section 4 through a series of simulation-based
and physical experiments on two mobile robots that demonstrate its effectiveness
at carrying out navigation commands, as well as highlight the conditions under
which it fails. Our results indicate that exploiting the environment knowledge
implicit in a natural language instruction enables us to predict a world model
upon which we can successfully estimate the action sequence most consistent
with the command, approaching performance levels of complete environment
a priori knowledge. These results suggest that utilizing information implicitly
contained in natural language instructions can improve collaboration in human-
robot teams.

2 Related Work

Natural language has proven to be effective for commanding robots to follow
route directions [1–5] and manipulate objects [6]. The majority of prior ap-
proaches require a complete semantically-labeled environment model that cap-
tures the geometry, location, type, and label of objects and regions in the envi-
ronment [2, 5, 6]. Understanding instructions in unknown environments is often
more challenging. Previous approaches have either used a parser that maps lan-
guage directly to plans [1, 3, 4], or trained a policy that reasons about uncertainty
and can backtrack when needed [7]. However, none of these approaches directly
use the information contained in the instruction to inform their environment rep-
resentation or reason about its uncertainty. We instead treat language as a sensor
that can be used to generate a prior over the possible locations of landmarks by
exploiting the information implicitly contained in a given instruction.

State-of-the-art semantic mapping frameworks focus on using the robot’s
sensor observations to update its representation of the world [8–10]. Some ap-
proaches [10] integrate language descriptions to improve the representation but
do not extend the maps based on natural language. Our approach treats natural
language as another sensor and uses it to extend the spatial representation by
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Fig. 2. Framework outline.

adding both topological and metric information, which is then used for plan-
ning. Williams et. al. [11] use a cognitive architecture to add unvisited locations
to a partial map. However, they only reason about topological relationships to
unknown places, do not maintain multiple hypothesis, and make strong assump-
tions about the environment limiting the applicability to real robot systems.
In contrast, our approach reasons both topologically and metrically about ob-
jects and regions, and can deal with ambiguity, which allows us to operate in
challenging environments.

As we reason in the space of distributions over possible environments, we
draw from strategies in the belief-space planning literature. Most importantly, we
represent our belief using samples from the distribution, similar to work by Platt
et. al. [12]. Instead of solving the complete Partially-Observable Markov Decision
Process (POMDP), we instead seek efficient approximate solutions [13, 14].

3 Technical Approach

Our goal is to infer the most likely future robot trajectory xt+1:T up to time hori-
zon T , given the history of natural language utterances Λt, sensor observations
zt, and odometry ut,

arg max
xt+1:T ∈<n

p
(
xt+1:T |Λt, zt, ut

)
. (1)

Inferring the maximum a posteriori trajectory (1) for a given natural language
utterance is challenging without knowledge of the environment for all but trivial
applications. To overcome this challenge, we introduce a latent random variable
St that represents the world model as a semantic map that encodes the location,
geometry, and type of the objects within the environment. This allows us to
factor the distribution as

arg max
xt+1:T ∈<n

∫
St

p(xt+1:T |St, Λt, zt, ut) p(St|Λt, zt, ut) dSt. (2)
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As we maintain the distribution in the form of samples, this simplifies to,

arg max
xt+1:T ∈<n

∑
i

p(xt+1:T |S(i)
t , Λt, zt, ut) p(S

(i)
t |Λt, zt, ut) (3)

Our algorithm learns these distributions online based upon the robot’s sensor
and odometry streams and the user’s natural language input. We do so through
a filtering process whereby we first infer the distribution over the world model
St based upon annotations identified from the utterance (second term in the
integral in (2)), upon which we then infer the constraints on the robot’s action
that are most consistent with the command given the initial map. At this point,
the algorithm solves for the most likely policy under the learned distribution over
trajectories (first term in the integral in (2)). During execution, we continuously
update the semantic map St as sensor data arrives and refine the optimal policy
according to the re-grounded language.

We use the Distributed Correspondence Graph (DCG) model [5] to efficiently
convert unstructured natural language to symbols that represent the spaces of
annotations and behaviors. The DCG model is a probabilistic graphical model
composed of random variables that represent language λ, groundings γ, and
correspondences between language and groundings φ and factors f . Each factor
fij in the DCG model is influenced by the current phrase λi, correspondence
variable φij , grounding γij , and child phrase groundings γcij . The parameters in

each log-linear model υ are trained from a parallel corpus of labeled examples
for annotations and behaviors in the context of a world model Υ . In each, we
search for the unknown correspondence variables that maximize the product of
factors:

arg max
φ∈Φ

∏
i

∏
j

fij

(
φij , γij , γcij , λi, Υ, υ

)
. (4)

An illustration of the graphical model used to represent Equation 4 is shown
in Figure 3. In Figure 3 the black squares, white circles, and gray circles represent
factors, unknown random variables, and known random variables respectively. It
is important to note that each phrase can have a different number of vertically
aligned factors if the symbols used to ground particular phrases differ. In this
paper we use a binary correspondence variable to indicate the expression or
rejection of a particular grounding for a phrase. We construct the symbols used
to represent each phrase using only the groundings with a true correspondence
and take the meaning of a utterance as the symbol inferred at the root of parse
tree.

Figure 2 illustrates the architecture of the integrated system that we con-
sider for evaluation. First, the natural language understanding module infers
a distribution over annotations conveyed by the utterance. The semantic map
learning method then uses this information in conjunction with the prior anno-
tations and sensor measurements to build a probabilistic model of objects and
their relationships in the environment. We then formulate a distribution over
robot behaviors using the utterance and the semantic map distribution. Next,
the planner computes a policy from this distribution over behaviors and maps.
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Fig. 3. A DCG used to infer annotations or behaviors from the utterance “go to the
hydrant behind the cone.” The factors fij , groundings γij , and correspondence variables
φij are functions of the symbols used to represent annotations and behaviors.

As the robot makes more observations or receives additional human input, we
repeat the last three steps to continuously update our understanding of the most
recent utterance.

3.1 Annotation Inference

The space of symbols used to represent the meaning of phrases in map inference
is composed of objects, regions, and relations. Since no world model is assumed
when inferring linguistic annotations from the utterance, the space of objects is
equal to the number of possible object types that could exist in the scene. Regions
are some portion of state-space that is typically associated with a relationship
to some object. Relations are a particular type of association between a pair of
objects or regions (e.g., front, back, near, far). Since any set of objects, regions,
and relations may be inferred as part of the symbol grounding, the size of the
space of groundings for map inference grows as the power set of the sum of these
symbols. We use the trained DCG model to infer a distribution of annotations
αt from the positively expressed groundings at the root of the parse tree.

3.2 Semantic Mapping

We treat the annotations as noisy observations αt that specify the existence
and spatial relations between labeled objects in the robot’s environment. We
use these observations along with those from the robot’s sensors zt to learn the
distribution over the semantic map St = {Gt, Xt}

p(St|Λt, zt, ut) ≈ p(St|αt, zt, ut) (5a)

= p(Gt, Xt|αt, zt, ut) (5b)

= p(Xt|Gt, αt, zt, ut)p(Gt|αt, zt, ut), (5c)
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where the first line follows from the assumption that there is a single annota-
tion αt for a given utterance λt. The last line expresses the factorization into
a distribution over the topology and a conditional distribution over the met-
ric map. Owing to the combinatorial number of candidate topologies [10], we
employ a sample-based approximation to the latter distribution and model the
conditional posterior over poses with a Gaussian, parametrized in the canonical

form. In this manner, each particle S
(i)
t = {G(i)

t , X
(i)
t , w

(i)
t } consists of a sampled

topology G
(i)
t , a Gaussian distribution over the poses X

(i)
t , and a weight w

(i)
t .

We note that this model is similar to that of Walter et al. [10], though we don’t
treat the labels as being uncertain.

We use a Rao-Blackwellized particle filter [15] to efficiently maintain this
distribution over time, as the robot receives new annotations and observations
while executing the inferred behavior. This process involves proposing updates
to each sampled topology that express object observations and annotions. Next,
the algorithm uses the proposed topologies to perform a Bayesian update to the
Gaussian distribution over the node (object) poses. The algorithm then updates
the particle’s weight so as to approximate the target distribution. We perform
this process for each particle and repeat these steps at each time instance. The
following describes each operation in more detail.

During the proposal step, we first augment each sample topology with an
additional node and edge that model the robot’s motion, resulting in a new

topology S
(i)−
t . We then sample modifications to the graph ∆

(i)
t = {∆(i)

αt , ∆
(i)
zt }

based upon the most recent annotations and sensor observations αt and zt

p(S
(i)
t |S

(i)
t−1, αt, zt, ut) = p(∆(i)

αt |S
(i)−
t , αt) p(∆

(i)
zt |S

(i)−
t , zt) p(S

(i)−
t |S(i)

t−1, u
t),

where S
(i)
t = {S(i)−

t , ∆
(i)
t }. The updates can include the addition of nodes to

the graph representing newly hypothesized or observed objects. They also may
include the addition of edges between nodes to express spatial relations inferred
from observations or annotations.

For each language annotation αt,j , we sample the graph modifications from
the proposal (6) in a multi-stage process.

p(∆(i)
αt |S

(i)−
t , αt) =

∏
j

p(∆(i)
αt,j |S

(i)−
t , αt,j) (6)

We use a likelihood model over the spatial relation to sample landmark and
figure pairs for the grounding. This model employs a Dirichlet process prior that
accounts for the fact that the annotation may refer to existing or new objects. If
the landmark and/or the figure are sampled as new objects, we add these objects
to the particle, and create an edge between them. We also sample the metric
constraint associated with this edge, based on the spatial relation.

When the robot observes objects, a similar process is employed (7). For each
observation, a grounding is sampled from the existing model of the world. We
add a new constraint to the object when the grounding is valid, and create a
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new object and constraint when it is not.

p(∆(i)
zt |S

(i)−
t , zt) =

∏
j

p(∆(i)
zt,j |S

(i)−
t , zt,j) (7)

After proposing modifications to each particle, we perform a Bayesian update
to their Gaussian distribution. Next, we reweight each particle (8) by taking into
account the likelihood of generating language annotations, as well as positive and
negative observations of objects. For annotations, we use the natural language
grounding likelihood under the map at the previous time step. For object obser-
vations, we use the likelihood that the observations were (or were not) generated
based upon the previous map. This has the effect of down-weighting particles
for which the observations are unexpected.

w
(i)
t = p(zt, αt|St−1)w

(i)
t−1 = p(αt|St−1) p(zt|St−1)w

(i)
t−1 (8)

We normalize the weights and resample if their entropy exceeds a threshold [15].

3.3 Behavior Inference

The space of symbols used to represent the meaning of phrases in behavior
inference is composed of objects, regions, actions, and goals. Objects and regions
are defined in the same manner as in map inference, though the presence of
objects is a function of the inferred map. Actions and goals specify how the
robot should perform a behavior to the planner. Since any set of actions and goals
can be expressed to the planner, the space of groundings for behavior inference
also grows as the power set of the sum of these symbols. For the experiments
discussed later in Section 4 we assume a number of objects, regions, actions, and
goals that are proportional to the number of objects in the hypothesized world
model. We use the trained DCG model to infer a distribution of behaviors β
from the positively expressed groundings at the root of the parse tree.

3.4 Planner

Since it is difficult to both represent and search the continuum for a trajectory
that best reflects the entire instruction in the context of the semantic map, we
instead learn a policy that predicts a single action which maximizes the one-step
expected value of taking the action at from the robot’s current pose xt. This
process is repeated until the policy declares it is done following the command
using a separate action astop.

As the robot moves in the environment, it builds and updates a graph of
locations it has previously visited, as well as frontiers that lie at the edge of
explored space. This graph is used to generate a candidate set of actions that
consists of all frontier nodes F as well as previously-visited nodes V that the
robot can travel to next

At = F ∪ V ∪ {astop}. (9)
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(a) t = 0 (b) t = 4 (c) t = 8

Fig. 4. The value function over time for the command “go to the hydrant behind the
cone,” where (a) the triangle denotes the robot, squares denote observed cones, and
circles denote sampled (empty) and observed (filled) hydrants. The robot first moves
towards the left cluster, but after not observing the hydrant, (b) the map distribution
peaks at the right cluster. The robot moves right and (c) sees the actual hydrant.

The policy selects the action with the maximum value under our value function

π(xt) = arg max
at∈At

V (xt, at). (10)

The value of a particular action is a function of the behavior and the se-
mantic map, which are not observable. Instead, we solve this using the QMDP
algorithm [13] by taking the expected value under the semantic map and behav-
ior distributions

V (xt, at) ≈
∑
S

(i)
t

∑
βj

V
(
xt, at;S

(i)
t , βj

)
p
(
βj |S(i)

t

)
p
(
S
(i)
t

)
. (11)

We define the value for a semantic map particle and behavior as

V
(
xt, at;S

(i)
t , βj

)
= γd(at,gs), (12)

where γ is the MDP discount factor and d is the Euclidean distance between
the action node and the behavior’s goal position gs. Our belief space policy
π then picks the maximum value action. We reevaluate this value function as
the semantic map and behavior distributions improve with new observations.
Figure 4 demonstrates the evolution of the value function over time.

4 Results

We first analyze the ability of our natural language understanding module to
independently infer the correct annotations and behaviors for given utterances.
Next, we analyze the effectiveness of our end-to-end framework through sim-
ulations that consider environments and commands of varying complexity, and
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Table 1. Natural language understanding results with 95% confidence intervals.

Model Accuracy (%) Training Time (sec) Inference Time (sec)

Annotation 62.50 (10.83) 145.11 (7.55) 0.44 (0.03)
Behavior 55.77 (6.83) 18.30 (1.02) 0.05 (0.00)

different amounts of prior knowledge. We then demonstrate the utility of our ap-
proach in practice using experiments run on two mobile robot platforms. These
experiments provide insights into our algorithm’s ability to infer the correct
behavior in the presence of unknown and ambiguous environments.

4.1 Natural Language Understanding

We evaluate the performance of our natural language understanding component
in terms of the accuracy and computational complexity of inference using holdout
validation. In each experiment, the corpus was randomly divided into separate
training and test sets to evaluate whether the model can recover the correct
groundings from the utterance and the world model. Each model used 13,716
features that checked for the presence of words, properties of groundings and cor-
respondence variables, and relationships between current and child groundings
and searched the model with a beam width of 4. We conducted 8 experiments
for each model type using a corpus of 39 labeled examples of instructions and
groundings. For annotation inference we assumed that the space of groundings
for every phrase is represented by 8 object types, 54 regions, and 432 relations.
For behavior inference we assumed that noun and prepositions ground to hy-
pothesized objects or regions while verbs ground to 2 possible actions, 3 possible
modes, goal regions, and constraint regions. In the example illustrated in Fig. 3
with a world model composed of seven hypothesized objects the annotation in-
ference DCG model contained 5,934 random variables and 2,964 factors while the
behavior inference DCG model contained 772 random variables and 383 factors.
In each experiment 33% of the labeled examples in the corpus were randomly
selected for the holdout. The mean number of log-linear model training exam-
ples extracted from the 26 randomly selected labeled examples for annotation
and behavior inference was 83,547 and 9,224 respectively. Table 1 illustrates the
statistics for the annotation and behavior models.

This experiment demonstrates that we are able to learn many of the relation-
ships between phrases, groundings, and correspondences with a limited number
of labeled instructions, and infer a distribution of symbols quickly enough for
the proposed architecture. As expected the training and inference time for the
annotation model is much higher because of the difference in the complexity
of symbols. This is acceptable for our framework since the annotation model is
only used once to infer a set of observations while the behavior model is used
continuously to process the updated map distributions.
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4.2 Monte Carlo Simulations

Next, we evaluate the entire framework through an extended set of simulations in
order to understand how the performance varies with the environment configura-
tion and the command. We consider four environment templates, with different
numbers of figures (hydrants) and landmarks (cones). For each configuration,
we sample ten environments, each with different object poses. For these environ-
ments, we issued three natural language instructions “go to the hydrant,” “go
to the hydrant behind the cone,” and “go to the hydrant nearest to the cone.”
We note that these commands were not part of the corpus that we used to train
the DCG model. Additionally, we considered six different settings for the robot’s
field-of-view, 2 m, 3 m, 5 m, 10 m, 15 m, and 20 m, and performed approximately
100 simulations for each combination of environment, command, and field-of-
view. As a ground-truth baseline, we performed ten runs of each configuration
with a completely known world model.

Table 2. Monte Carlo simulation results with 1σ confidence intervals (Hydrant, Cone).

Success Rate (%) Distance (m)

World FOV (m) Relation Known Ours Known Ours

1H, 1C 3.0 null 100.0 93.9 8.75 (1.69) 16.78 (7.90)
1H, 1C 3.0 “behind” 100.0 98.3 8.75 (1.69) 13.43 (7.02)
1H, 2C 3.0 null 100.0 100.0 11.18 (1.38) 32.54 (18.50)
1H, 2C 3.0 “behind” 100.0 99.5 11.18 (1.38) 40.02 (29.66)
2H, 1C 3.0 null 100.0 54.4 10.49 (1.81) 21.56 (10.32)
2H, 1C 3.0 “behind” 100.0 67.4 10.38 (1.86) 18.72 (10.23)
2H, 1C 5.0 “nearest” 100.0 46.2 9.19 (1.54) 12.05 (5.76)

Table 2 presents the success rate and distance traveled by the robot for these
100 simulation configurations. We considered a run to be successful if the planner
stops within 1.5 m of the intended goal. Comparing against commands that do
not provide a relation (i.e., “go to the hydrant”), the results demonstrate that
our algorithm achieves greater success and yields more efficient paths by tak-
ing advantage of relations in the command (i.e., “go to the hydrant behind the
cone”). This is apparent in environments consisting of a single figure (hydrant)
as well as more ambiguous environments that consist of two figures. Particu-
larly telling is the variation in performance as a result of different fields-of-view.
Figure 5 shows how success rate increases and distance traveled decreases as
the robot’s sensing range increases, quickly approaching the performance of the
system when it begins with a completely known map of the environment.

One interesting failure case is when the robot is instructed to “go to the
hydrant nearest to the cone” in an environment with two hydrants. In instances
where the robot sees a hydrant first, it hypothesizes the location of the cone, and
then identifies the observed hydrants and hypothesized cones as being consistent
with the command. Since the robot never actually confirms the existence of the
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Fig. 5. Distance traveled (top) and success rate (bottom) as a function of the field-
of-view for the commands “go to the hydrant behind the cone” (left) and “go to the
hydrant nearest to the cone” (right) in simulation.

cone in the real world, this results in the incorrect hydrant being labeled as the
goal.

4.3 Physical Experiments

We applied our approach to two mobile robots, a Husky A200 mobile robot
(Fig. 6(a)) and an autonomous robotic wheelchair [16] (Fig. 6(b)). The use of
both platforms demonstrates the application of our algorithm to mobile robots
with different vehicle configurations, underlying motion planners, and camera
fields-of-view. The actions determined by the planner are translated into lists of
waypoints that are handled by each robot’s motion planner. We used AprilTag
fiducials [17] to detect and estimate the relative pose of objects in the envi-
ronment, subject to self-imposed angular and range restrictions on the robot’s
field-of-view.

In each experiment, a human operator issues natural language commands
in the form of text that involve (possibly null) spatial relations between one or
two objects. The results that follow involve the commands “go to the hydrant,”
“go to the hydrant behind the cone,” and “go to the hydrant nearest to the
cone.” As with the simulation-based experiments, these instructions did not
match those from our training set. For each of these commands, we consider
different environments by varying the number and position of the cones and
hydrants and by changing the robot’s field-of-view. For each configuration of
the environment, command, and field-of-view, we perform ten trials with our
algorithm. For a ground-truth baseline, we perform an additional run with a
completely known world model. We consider a run to be a success when the
robot’s final destination is within 1.5 m of the intended goal.

Table 3 presents the success rate and distance traveled by the wheelchair for
these experiments. Compared to the scenario in which the command does not
provide a relation (i.e., “go to the hydrant”), we find that our algorithm is able
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(a) Husky (b) Wheelchair

Fig. 6. The setup for the experiments with the (a) Husky and (b) wheelchair platforms.

Table 3. Experimental results with 1σ confidence intervals (Hydrant, Cone).

Success Rate (%) Distance (m)

World FOV (m) Relation Known Ours Known Ours

1H, 1C 2.5 null 100.0 100.0 4.69 16.56 (7.20)
1H, 1C 2.5 “behind” 100.0 100.0 4.69 9.91 (3.41)
1H, 2C 3.0 “behind” 100.0 100.0 4.58 7.64 (2.08)
2H, 1C 2.5 “behind” 100.0 80.0 5.29 6.00 (1.38)
2H, 1C 4.0 “nearest” 100.0 100.0 4.09 4.95 (0.39)
2H, 1C 3.0 “nearest” 100.0 50.0 6.30 7.05 (0.58)

to take advantage of available relations (“go to the hydrant behind the cone”)
to yield behaviors closer to that of ground truth. The results are similar for
the Husky platform, which resulted in an 83.3% success rate when commanded
to “go to the hydrant behind the cone” in an environment with one cone and
one hydrant. The ability to utilize relation annotations is also important when
the same command is given in an environment with two figures (hydrants). Of
the ten runs, the robot successfully identified the correct hydrant as the goal
eight times, and chose the wrong hydrant for the remaining two. These failures
occur when the field-of-view is such that the robot only observes the incorrect
hydrant. The semantic map distribution then hypothesizes the existence of cones
in front of the hydrant, which leads to a behavior distribution peaked around
this goal. In the eight successful trials, the robot observes all three objects and
infers the correct behavior. Similarly, if we consider the command “go to the
hydrant nearest to the cone,” we find that the robot reaches the goal in all ten
experiments with a 4 m field-of-view. However, reducing the field-of-view to 3 m
results in the robot reaching the goal in only half of the trials.
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5 Conclusions

Enabling robots to reason about parts of the environment that have not yet been
visited solely from a natural language description serves as one step towards
effective and natural collaboration in human-robot teams. By using language as
a sensor, we are able to paint a rough picture of what the unvisited parts of the
environment could look like, which we utilize during planning and update with
actual sensor information during task execution.

Our approach exploits the information implicitly contained in the language to
infer the relationship between objects that may not be initially observable, with-
out having to consider those annotations as a separate utterance. By learning a
distribution over the map, we generate a useful prior that enables the robot to
sample possible hypotheses, representing different environment possibilities that
are consistent with both the language and the available sensor data. Learning
a policy which reasons in the belief space of these samples achieves a level of
performance that approaches full knowledge of the world ahead of time.

These evaluations provide a preliminary validation of our framework. Future
work will test the algorithm’s ability to handle utterances that present complex
relations (e.g., “go to the cone near the tree by the wall”) and behaviors that
are more detailed (e.g., “go to the cone near the barrel and stay to the right
of the car”) than those considered above. An additional direction for following
work is to explicitly reason over exploratory behaviors that take information
gathering actions to resolve uncertainty in the map. Currently, any exploration
on the part of the algorithm is opportunistic, which might not be sufficient in
more challenging scenarios. Furthermore, for utterances that contain ambiguous
information or are difficult to parse, we may be able to use a dialogue system
to resolve the ambiguity. For example, the utterance “go to the cone” can be
ambiguous when there are several cones present, but “the one nearest to the tree”
may provide the missing piece of information to follow the direction correctly.
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