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Abstract—Shared autonomy is an operational concept in which
a user and an autonomous agent collaboratively control a robotic
system. It provides a number of advantages over the extremes of
full-teleoperation and full-autonomy in many settings. Traditional
approaches to shared autonomy rely on knowledge of the envi-
ronment dynamics, a discrete space of user goals that is known a
priori, or knowledge of the user’s policy—assumptions that are
unrealistic in many domains. Recent works relax some of these
assumptions by formulating shared autonomy with model-free
deep reinforcement learning (RL). In particular, they no longer
need knowledge of the goal space (e.g., that the goals are discrete
or constrained) or environment dynamics. However, they need
knowledge of a task-specific reward function to train the policy.
Unfortunately, such reward specification can be a difficult and
brittle process. On top of that, the formulations inherently rely on
human-in-the-loop training, and that necessitates them to prepare
a policy that mimics users’ behavior. In this paper, we present
a new approach to shared autonomy that employs a modulation
of the forward and reverse diffusion process of diffusion models.
Our approach does not assume known environment dynamics or
the space of user goals, and in contrast to previous work, it does
not require any reward feedback, nor does it require access to
the user’s policy during training. Instead, our framework learns
a distribution over a space of desired behaviors. It then employs
a diffusion model to translate the user’s actions to a sample from
this distribution. Crucially, we show that it is possible to carry
out this process in a manner that preserves the user’s control
authority. We evaluate our framework on a series of challenging
continuous control tasks, and analyze its ability to effectively
correct user actions while maintaining their autonomy.

I. INTRODUCTION

Contemporary robots primarily operate in one of two differ-
ent ways—full teleoperation or full autonomy. Teleoperation
is common in unstructured environments (e.g., underwater),
where the proficiency with which robots are able to understand
their surroundings is insufficient for fully autonomous robots
to operate reliably. However, direct teleoperation requires users
to interpret the robot’s environment observations while si-
multaneously controlling its low-level actions, a responsibility
that is particularly challenging for highly dynamic tasks. This
operational gap motivates a setting in which a human and an
autonomous agent collaborate and share control of the robot.

Shared autonomy [2] is a framework in which a human
user (also referred to as the pilot) performs a task with an
assistance of an autonomous agent (also referred to as the
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Fig. 1: Our framework utilizes a diffusion model to adapt
a user’s action (red) to those generated from an expert dis-
tribution (green) in a manner (blue) that balances a user’s
desire to maintain control authority with the benefits (e.g.,
safety) of conforming to the expert distribution learned from
demonstrations. Without knowledge of the user’s specific goal
(e.g., the landing location), the expert distribution reflects
different goals that one or more experts previously reached.

copilot) [22, 41, 3, 14, 15, 23, 6]. The role of the agent is
to complement the control authority of the user, whether to
improve the robot’s performance on the current task or to
encourage/ensure safe behavior. An important consideration
when providing assistance via shared autonomy is the degree
to which the agent balances the user’s preference for maintain-
ing control authority (i.e., the fidelity of the assisted behavior
relative to the user’s actions), and the potential benefits of
endowing more control to the agent (i.e., the conformity of
the assisted behavior to that of an autonomous agent).

A core difficulty of shared autonomy lies in the fact that the
user’s goal (intent) is typically not known. Many approaches
to shared autonomy assume that there is a fixed, discrete
set of candidate goals and seek to infer the user’s specific
goal at test-time based on observations, including the user’s
control input [35, 29, 37, 25, 15]. Such assumptions may be
reasonable in structured environments (e.g., in the context of a
manipulation task when there is a small number of graspable
objects sitting on a table). However, they can be limiting in
unstructured environments that lack well-defined goals or that
have a very large set of potential goals.

Bootstrapped by function approximation with neural-
networks, recent deep reinforcement learning (RL) algorithms



seek to learn assistive policies without assumptions on the
nature or knowledge of the goal space, or the assumption
that the environment dynamics are known. Reddy et al. [39]
propose a deep RL approach to shared autonomy for domains
with discrete actions, nominally relying on reward feedback
from the user as an alternative to assuming that the goal space
is known. In an effort to balance the user’s control authority
with task performance, the assistant chooses the action most
similar to that of the user while also satisfying a state-action
value constraint. Schaff and Walter [43] treat the copilot as
providing a residual that is added to the user’s actions to
correct for unsafe behavior. They train their model to minimize
the norm of the residual, subject to a goal-agnostic reward
constraint that represents safe behavior.

These methods treat the pilot as a part of the environment,
using an augmented state that includes the user’s action.
Framing the problem in this way has a clear and significant
advantage—it enables the direct utilization of the modern
suite of tools for deep RL. However, these methods have two
notable limitations. First, they nominally require human-in-
the-loop interaction during training in order to generate user
actions while learning the assistant’s policy. Since the sample
complexity of deep RL makes this interaction intractable, these
methods replace the human with a surrogate policy. If this
surrogate is misspecified or invalid, this approach can lead to
copilots that are incompatible with actual human pilots [43].
Second, these methods require access to task-specific reward
during training, which may be difficult to obtain in practice.

In light of these limitations, we propose a model-free
approach to shared autonomy that interpolates between the
user’s action and an action sampled from a generative model
that provides a distribution over desired behavior (Fig. 1).1

Our approach has the distinct advantage that it does not
require knowledge of or access to the user’s policy or any
reward feedback during training and, in turn, no reward
engineering. Instead, training, which involves learning the
generative model, only requires access to trajectories that are
representative of desired behavior.

The generative model that underlies our approach is a
diffusion model [49, 45, 46, 26], which has proven highly
effective for complex generation tasks including image syn-
thesis [13, 42]. Diffusion models consist of two key processes:
the forward process and the reverse process. The forward
process iteratively adds Gaussian noise to the input with an
increasing noise scale, while the reverse process is trained
to iteratively denoise a noisy input in order to arrive at
the target distribution. As part of this denoising process,
the model produces a gradient that shows a direction to
which the likelihood of its input increases under the target
distribution. Once the model is trained, generating a sample
from the (unknown) target distribution amounts to running the
reverse process on a sample drawn from a zero-mean isotropic
Gaussian distribution.

As we will see in the following sections, a direct use of

1For video and code, see https://diffusion-for-shared-autonomy.github.io.

Fig. 2: (Top) A visualization of the forward diffusion of a
source distribution Psrc and its reverse diffusion to the target
distribution Ptgt. (Bottom) The result of forward and reverse
diffusion for different switching times ksw, where standard
reverse diffusion process corresponds to ksw = K.

diffusion models for shared autonomy ends up in generating an
action that ignores user’s intent (i.e., low fidelity to user intent),
even though the action would be consistent with the desired
behaviors (i.e., high conformity to the target behaviors). To
address this, we propose a new algorithm that controls the
effect of the forward and reverse process through a forward
diffusion ratio γ (Fig. 3), that regulates the balance between
the fidelity and the conformity of the generated actions. The
forward diffusion ratio provides a formal bound on the extent
to which the copilot’s action deviates from that of the user.

We evaluate our shared autonomy algorithm using a series
of continuous control tasks. In each case, we demonstrate
that our algorithm significantly improves the performance of a
variety of different pilots, and we analyze the effects of a range
of different diffusion ratios. Empirically, we find that there
exists a consistent setting of the diffusion ratio that generalizes
across a variety of different pilot policies, and that ratios below
and above this setting have expected effects on the fidelity and
conformity of the resulting actions.

II. METHOD

Integral to our approach to shared autonomy is its utilization
of diffusion models as a generative model that serves to correct
the actions of the user. As such, we begin this section with an
in-depth review of diffusion models.

A. Background on diffusion models

We first present the mathematical formulation of diffusion
models, with a particular emphasis on the denoising diffusion
probabilistic model (DDPM) [26], which we employ.

A probabilistic diffusion model [45] is a type of generative
model that is characterized by two processes (Fig. 2): a

https://diffusion-for-shared-autonomy.github.io
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Fig. 3: Our algorithm uses the forward diffusion ratio γ to
regulate the extent of forward and reverse diffusion. When
γ is small, the assistant generates actions nearly identical to
those of the user (i.e., high fidelity) but may be far from the
desired behaviors (i.e., low conformity). Depending on the
competency of the user, these actions may result in poor task
performance (e.g., due to crashes). As with standard diffusion,
when γ is large, the assistant will generate actions that have
high likelihood under the distribution over desired behavior
(i.e., high conformity), with little-to-no regard for their similar-
ity to the user’s actions (i.e., low fidelity). While these actions
will be safe, they will likely result in poor performance since
the forward process has removed any information about user’s
intention. By controlling γ, our algorithm identifies a regime
that trades off between fidelity and conformity to generate
actions that preserve the user’s intent and, in turn, the critical
information to complete the task.

forward diffusion process and a reverse diffusion process. The
forward diffusion process is an iterative first-order Markov
chain that adds noise to a sample from a data distribution
x0 ∼ q(x0). Assuming a predefined sequential noise schedule
of K steps, β1, . . . , βK and αk := 1−βk, a single step in the
forward process operates as

xk =
√
αkxk−1 +

√
1− αkϵ, ϵ ∼ N (0, I). (1)

Applying this recursively, multiple steps of forward process
can be written in a closed form as

xk =
√
ᾱkx0 +

√
1− ᾱkϵ, ϵ ∼ N (0, I), (2)

where ᾱk := Πk
s=1αs. Equivalently,

q(xk | xk−1) = N (xk;
√
αkx0, (1− αk)I) (3a)

q(xk | x0) = N (xk;
√
ᾱkx0, (1− ᾱk)I) (3b)

Meanwhile, the reverse diffusion process is a Markov
chain that iteratively denoises a noisy input, starting from
xK ∼ N(0, I). The conditional distribution over the output
at each step q(xk−1|xk) is Gaussian. However, computing
these intermediate steps depends upon the entire data distri-
bution and is generally not tractable in closed-form. Thus,
we train a model that approximates it as pθ(xk−1 | xk) =

N (xk−1;µθ(xk, k), σ
2
kI) to run the reverse process. Happily,

the probability q(xk−1 | xk) that we want to model becomes
tractable if additionally conditioned on x0. By Bayes’ rule,
we have

q(xk−1 | xk,x0) = q(xk | xk−1,x0)
q(xk−1 | x0)

q(xk | x0)
(4a)

= q(xk | xk−1)
q(xk−1 | x0)

q(xk | x0)
(4b)

= N (xk−1; µ̃(xk,x0), β̃kI) (4c)

Crucially, Equation 4b only contains known terms from the
Gaussian distributions in Equations 3a and 3b. In the last
expression, we have dropped the mean and covariance for
notational brevity.

Intuitively, we can train the model pθ(xk−1 | xk) by
minimizing its divergence from q(xk−1 | xk,x0) over samples
from the data distribution q(x0). Utilizing the evidence lower
bound of Eq[− log pθ(x0)], we can formulate the loss as:

L := Eq

[
K−1∑
k=2

Lk − log pθ(x0 | x1) + C

]
,

Lk = DKL
(
q(xk−1 | xk,x0)∥pθ(xk−1 | xk)

)
,

(5)

where DKL is the Kullback-Leibler (KL) divergence, C is a
constant that corresponds to fixed parameters of the forward
diffusion process [26]. The term Lk is the KL divergence
between two Gaussian distributions, which can be computed
in closed form as the squared error between two means

Lk = Exk∼q

[
1

2σ2
k

∥µ̃(xk,x0)− µθ(xk, k)∥22
]
+ C ′, (6)

where C ′ is a constant independent of θ. Now we note the fact
that predicting x̂k−1 = µθ(xk, k) given xk is equivalent to
predicting the noise ϵ that was added to xk−1 (see Equation 1).
We can thus reformulate the problem as one of minimizing
the error in the noise prediction. By parameterizing µθ(xk, k)
as a function of predicted noise ϵθ(xk, k), we can simplify
Equation 6 to

Eq,ϵ∼N (0,I)

[
ck(β1:K , σk)∥ϵ− ϵθ(xk, k)∥22

]
, (7)

where ck(β1:K , σk) is a constant computed from the beta
schedule for each timestep k. Ho et al. [26] further simplify
this equation to arrive at the final loss that, with a slight abuse
of notation, becomes

Lsimple := Ek,x0,ϵ∼N (0,I)

[
∥ϵ− ϵθ(xk(x0, ϵ), k)∥22

]
(8a)

xk(x0, ϵ) :=
√
ᾱkx0 +

√
1− ᾱkϵ, (8b)

where k is sampled uniformly as k ∈ [1,K]. After training,
we can generate a sample x0 by running the reverse diffusion
process recursively from xK ∼ N (0, I)

xk−1 = µθ∗(xk, k) + σkz, (9)

where z ∼ N (0, I) for k > 1, else z = 0.



B. Diffusion model guidance for distribution transformation

Consider generally the problem of transforming one dis-
tribution Psrc onto another distribution Ptgt. This problem is
challenging, because finding such a correspondence between
distributions has an inherent dependence on the intrinsic
geometrical match between the two distributions. However,
there is an enticing shortcut that presents itself in the form
of diffusion processes. In particular, we note that the forward
diffusion process should allow us to map Psrc into a noise
distribution Pnoise (i.e., zero-mean isotropic Gaussian noise).
Drawing samples from this noise distribution, we can execute
the reverse diffusion process to guide the sample to being
drawn from Ptgt, assuming of course that the reverse process
was trained on data samples from Ptgt.

Although this diffusion process will ultimately take points
xsrc from Psrc and map to samples drawn from Ptgt, resulting
in x̂tgt, it will do so in a destructive manner. In particular,
as the forward diffusion process is applied to xsrc, the dis-
tribution of these points becomes progressively more random
(by design). In the end, its distribution reaches an isotropic
Gaussian distribution, completely corrupting the information
in the original sample. At this point, there is no relationship
between the source points xsrc and the derived points x̂tgt. We
may as well have simply started from Gaussian noise and run
reverse diffusion onto Ptgt.

We would like to learn a transformation F : xsrc → x̂tgt
that preserves information. Such a transformation between
distributions can be achieved by running the forward diffusion
process on Psrc(x) partway through, up to k = ksw, followed
by the reverse diffusion process for the same number of steps
(ksw), in order to transform these partially diffused points
onto Ptgt. Crucially, this process trades off the amount of
information present in xsrc that is preserved as a result of
forward diffusion, and the consistency (in terms of likelihood)
of the sample generated via reverse diffusion with respect to
the target distribution Ptgt (i.e., the distribution over desired
behaviors).

Very recently, Meng et al. [33] proposed a similar partial
diffusion process for the task of generating realistic images
based upon a user-provided sketch. The authors derive a bound
on the distance between x̂tgt and xsrc as follows.2 Assuming
that ∥ϵθ(x, k)∥ ≤ K for all x ∈ X and k ∈ [0,K], then for
all δ ∈ (0, 1) with probability at least (1− δ),

∥xsrc − x̂tgt∥22 ≤ σ2
ksw

(Kσ2
ksw

+ d+ 2
√
−d · log δ − 2 log δ),

(10)
where d is the dimensionality of x. From this bound, we
can see that the distance between xsrc and x̂tgt increases with
ksw, since σksw increases with ksw while other terms are not
affected. This expression allows us to bound the difference
between the action generated by the assistant x̂tgt and that of
the user xsrc.

2Their bound is for a variance exploding (VE) formulation of diffusion,
whereas we employ DDPM that uses a variance preserving (VP) formulation.
Despite the difference, they share the same mathematical intuition.

Algorithm 1 Shared autonomy as partial diffusion
Input: Observation st and pilot’s action ah

t

Output: Shared action as
t

Require: A pretrained state-conditioned denoising model µθ∗(a, k |
s), forward diffusion ratio γ, diffusion timestep K

1: Compute the switching timestep ksw ← ToInteger(γK)
2: Sample a Gaussian noise ϵ ∼ N (0, I)
3: ãh

t,ksw ←
√
ᾱkswa

h
t +
√
1− ᾱkswϵ ▷ Forward process

4: as
t,ksw ← ãh

t,ksw
5: for k in ksw, . . . , 2 do
6: Sample a noise vector z ∼ N (0, I)
7: as

t,k−1 ← µθ∗(a
s
t,k, k | st) + σkz ▷ Reverse process

8: end for
9: as

t,0 ← µθ(a
s
t,1, 1 | st)

10: return as
t,0

Figure 2 visualizes this property in two dimensions. Here,
samples from Psrc form the shape of a triangle, and samples
from Ptgt follow a distribution with three modes, each centered
on one of the vertices of a triangle. The black and blue arrow
represents the idea of executing partial diffusion—running the
forward (black) and reverse (blue) processes for ksw steps.
At the bottom of Figure 2, we visualize the result of partial
forward and reverse diffusion for different values of ksw. Here,
we color points based on their original spatial location in Psrc
(e.g., green points in the lower-right, red at the top, and blue at
the lower-left), and track their location over different degrees
of forward and reverse diffusion. Based on the visualization
of the resulting distributions, we see that the distance between
the initial points xsrc and x̂tgt increases with ksw, consistent
with Equation 10. More generally, we find that:
When ksw is small

• The original information is well-preserved (i.e., small
displacements; high fidelity)

• The obtained distribution is far from Ptgt (i.e., low con-
formity)

When ksw is large
• The original information is corrupted (i.e., large displace-

ments; low fidelity)
• The obtained distribution is close to Ptgt (i.e., high

conformity)
To discuss the effect of ksw independent of the number of

diffusion steps K, we herein define Forward Diffusion Ratio
γ := ksw/K, and will refer to this throughout the paper.

A similar idea in diffusion models has been adopted in
image generation, manipulation, and 3D geometry genera-
tion [33, 50, 38, 52].

C. Distribution transformation for shared autonomy

In a shared autonomy task, a copilot is asked to produce
a shared action ast , given the current state st and pilot action
aht . Ideally, the copilot will intervene such that the corrected
action ast preserves the pilot’s “intention”. However, it is hard
to formulate the pilot’s “intention” in a well-defined way,
particularly when the space of goals (tasks) is not known nor
even well-defined.



(a) 2D Control (b) Lunar Lander (c) Lunar Reacher (d) Block Pushing

Fig. 4: We evaluate our algorithm in the context of four shared autonomy environments including a (a) 2D Control task in
which an agent navigates to one of two different goals, (b) Lunar Lander that tasks a drone with landing at a designated
location, (c) a Lunar Reacher variant in which the objective is to reach a designated region in the environment, and (d) Block
Pushing, in which the objective is to use a robot arm to push an object into one of two different goal regions.

Our algorithm assumes that the latent intent of the user has
non-zero likelihood under the distribution over target behaviors
that we learn to sample from using a diffusion model. In other
words, if we have a finite set of expert demonstrations to train
the diffusion model, the states or state-action pairs that a user
would want to achieve need to exist in the demonstrations.
With our formulation to shared autonomy, the copilot manages
the trade-off between respecting pilot’s action (i.e., fidelity to
the pilot) and executing an action that is likely under the
learned behavior distribution (i.e., conformity to the target
behaviors). This trade-off bears similarity to the trade-off
discussed in Section II-B based on Figure 2.

Now, given a state st, we can see Psrc in Figure 2 as a
distribution over pilot actions and Ptgt as a distribution over
target behaviors, where each point represents a single action.
For the sake of explanation, we can pretend that each cluster
in Ptgt corresponds to a set of actions, each of which causes
distinct transitions. Hence, each cluster can be thought of as
a pilot’s “intention”, and the actions outside of the cluster
as being undesirable. Considering the visualization of the
different partially forward and reverse diffused distributions
at the bottom of the figure, we see that as we increase γ from
0.0 to 1.0, most of the pilot’s actions begin to go inside of the
set of ideal actions. This captures the notion that conformity to
the target behavior increases with γ. On the other hand, once γ
exceeds 0.5, the displacement of pilot actions (signified by the
mixture of colors) begin to enlarge, which is equivalent to the
copilot producing an action that ignores the pilot’s “intention”.
This captures the notion that the fidelity to the pilot decreases
as we increase γ.

Algorithm 1 summarizes the procedure of applying partial
forward and reverse diffusion to a pilot action ast and gen-
erating a shared action ast . In Section III, we investigate the
fidelity-conformity trade-off by modulating γ empirically for
various environments with different pilots.

III. EXPERIMENTS

We evaluate our approach to shared autonomy by pairing
our copilot with various pilots on a variety of simulated
continuous control tasks (Fig. 4): 2D Control, Lunar Lander,
Lunar Reacher and Block Pushing. Each of these tasks provide

the opportunity for the pilot to execute one of several different
behaviors that is not known to the copilot. We design each
domain to include a randomly sampled target state the pilot
intends to reach (herein referred to as the goal). For example,
in Lunar Reacher, a goal location is sampled randomly above
ground. Across all tasks, we reveal the goal only to the pilot,
by including it as part of the state. The copilot never has access
to the goal. This results in a scenario in which pilot’s intention
(i.e., the goal) is unknown to the copilot.

To understand the pilot’s intent, our copilot relies on a
state-conditioned diffusion model. This diffusion model is
trained as follows. First, we collect expert demonstrations,
each containing a sequence of goal-embedded state-action
pairs for each domain, where the goal is randomly sampled
at each episode. We then use the resulting demonstrations to
train a state-conditioned diffusion model using the DDPM loss
(Eqn. 8). The details of the model architecture are described in
Appendix A. As we hide a goal from our copilot, we remove
goal locations from each observation prior to training.

The following experiments use a single diffusion model
trained separately for each task. We note that the copilot’s
behavior changes only according to γ given a diffusion model.

We seek to answer the following questions: (1) How much
can our copilot assist a pilot? (2) Does our copilot generalize
to different pilots? and (3) What is the effect of the forward
diffusion ratio γ, and how can we interpret it?

A. Continuous control domains

1) 2D Control: We build a simple 2D continuous control
domain based on the maze-2D environment in D4RL [19] built
on the MuJoCo simulator [48], where the goal is located either
at the lower-left or lower-right corners of the large open space
(Fig. 4(a)). The agent is represented as a point mass, and the
actions are 2D forces applied to itself. The state consists of
the agent’s location and velocity, as well as the goal location.
Episodes are terminated if a timeout of 300 steps is reached.

2) Lunar Lander: Lunar Lander (Fig. 4(b)) is a continuous
control environment adopted from Open AI Gym [8] that
involves landing a spaceship on a landing pad. The actions
consist of continuous left, right and upward forces that emulate
thrusters on the spaceship. The state contains the position,



TABLE I: Success and crash/out-of-bounds (OOB) rates on Lunar Lander and Lunar Reacher for different pilots with (γ = 0.4)
and without assistance. Each entry corresponds to 10 episodes across 30 random seeds. Note that the Zero and Random pilots
have no knowledge of the goal.

Lunar Lander Lunar Reacher

Success Rate ↑ Crash/OOB Rate ↓ Success Rate ↑ Crash/OOB Rate ↓
Pilot w/o Copilot w/ Copilot w/o Copilot w/ Copilot w/o Copilot w/ Copilot w/o Copilot w/ Copilot

Noisy 20.67± 4.50 68.00±5.35 28.33±2.62 7.67±2.87 14.33± 2.49 45.33±3.30 77.33±3.09 38.00±2.94
Laggy 21.33± 2.05 75.00±3.56 76.67±2.49 9.67±3.86 30.67± 5.56 55.33±6.13 69.33±5.56 31.33±2.87

Zero 0.00± 0.00 27.00± 0.82 100.00±0.00 19.00± 2.94 0.00± 0.00 19.67± 2.62 100.00±0.00 58.33± 3.09
Random 0.00± 0.00 25.00± 4.32 100.00±0.00 19.33± 5.25 4.33± 1.89 22.33± 2.87 95.33±1.70 59.00± 0.82
Expert 77.67± 2.62 78.67± 2.87 12.33±0.94 8.00± 1.63 49.33± 4.78 55.00± 2.16 44.00±3.56 31.67± 2.87

left: 2 right: 0 timeout: 8

(a) γ = 0.0

left: 8 right: 1 timeout: 1

(b) γ = 0.1

left: 10 right: 0 timeout: 0

(c) γ = 0.2
left: 8 right: 2 timeout: 0

(d) γ = 0.4

left: 5 right: 5 timeout: 0

(e) γ = 0.6

left: 5 right: 5 timeout: 0

(f) γ = 0.8

Fig. 5: A visualization of the resulting trajectories in the
2D Control environment for different settings for the forward
diffusion ratio γ. The user’s objective is to reach the left-hand
goal. Without assistance (a) the user successfully reaches the
goal two times, while the eight others timeout. As we increase
γ, we see that (b)–(d) the user reaches the desired goal a
vast majority of the time. As γ gets closer to 1.0, (e) (f) the
assisted policy conforms to the expert policy, which avoids
timeouts, but without knowledge of the user’s goal distributes
the trajectories evenly between the left and right goals.

orientation, linear and rotational velocity of the spaceship,
whether each leg touches the ground, and the landing pad
location (provided only to the pilot). An episode ends when the
spaceship lands on the landing pad and becomes idle, crashes,
flies out of bounds, or it reaches a timeout of 1000 steps.

3) Lunar Reacher: A variant of Lunar Lander adopted from
previous work [43, 8], where the goal is not to land, but to
reach a random target location above the ground (Fig. 4(c)).
The setting otherwise matches that of Lunar Lander.

4) Block Pushing: A variant of the Simulated Pushing
environment [18]. The environment (Fig. 4(d)) consists of a
simulated six-DoF robot xArm6 in PyBullet [10] equipped
with a small cylindrical end effector. The task is to push an
object into one of two target zones in the robot’s workspace.
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Fig. 6: Success (higher is better), floating, and crash (lower is
better) rates for Lunar Lander with (a) noisy and (b) laggy
pilot. The dashed blue line denotes the success rate of an
expert policy, while the dotted blue line denotes the success
rate of our model with full-diffusion (γ = 1.0).

The episode terminates when the target reaches one of the two
locations or the number of steps exceeds a timeout of 100.
The position and orientation of the block and end effector are
randomly initialized at the start of each episode, while the
target locations are fixed.
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Fig. 7: Success, (higher is better), floating, and crash (lower
is better) rates for Lunar Reacher with (a) noisy and (b) laggy
pilot. The dashed blue line denotes the success rate of an
expert policy, while the dotted blue line denotes the success
rate of our model with full-diffusion (γ = 1.0).
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Fig. 8: The rates of block pushing task to terminate at correct
goal, wrong goal or timeout with (a) noisy and (b) laggy pilot.
The dashed blue line denotes the rate at which an expert policy
reaches the correct goal, while the dotted blue line denotes the
same rate for our model with full-diffusion (γ = 1.0).

B. Pilot and copilot

1) Pilot: Our method does not require access to a pilot (sur-
rogate or otherwise) when training the copilot. However, surro-
gate pilots are useful when we want to perform a large number
of evaluations in a reproducible manner. Thus, we prepare
two surrogate pilots consistent with previous work [39, 43]: a
Laggy pilot and a Noisy pilot, both of which are corrupted
versions of a single expert. At each time step, the Laggy
pilot repeats its previous action with probability plaggy, and
otherwise executes an action drawn from the expert’s policy.
With probability pnoisy, the Noisy pilot samples an action from
a uniform distribution over the action space, and otherwise
executes an action sampled from the expert policy. We evaluate
our shared autonomy algorithm for pilots across a broad range
of parameters pnoisy and plaggy. Due to space constraints, we
only include results for a representative subset of the pilot
parameters for Lunar Lander (plaggy = 0.85, pnoisy = 0.3),
Lunar Reacher (plaggy = 0.85, pnoisy = 0.6), and Block
Pushing (plaggy = pnoisy = 0.6), but include results for the
full range of pilot parameters in Figures 9–14 of Appendix B.

2) Copilot: Our copilot relies on a state-conditioned
diffusion model pθ(at | st) that we train for each task
based on expert demonstrations. To collect demonstrations,
we first train an expert policy with soft actor-critic [24] for
3M timesteps in Lunar Lander and Lunar Reacher, and 1M
timesteps in Block Pushing. We then roll out the policies
in each environment to collect demonstrations of state-action
pairs Dexpert for various goals. While the expert policy has
access to the goal location, we remove it from the dataset
of state-action pairs prior to training the state-conditioned
diffusion model. We provide details of the model architecture
and the hyperparameter settings in Appendix A.

C. Various pilots with our copilot

We evaluate our copilot with various surrogate pilots in all
four environments. Table I shows success and crash/out-of-
bound rates when various pilots are paired with our copilot in

TABLE II: Correct goal and timeout rates on the Block
Pushing task for different pilots with (γ = 0.2) and without
assistance. Each entry corresponds to 10 episodes across 30
random seeds. Note that the Zero and Random pilots have no
knowledge of the goal.

Correct Goal Rate ↑ Timeout Rate ↓
Pilot w/o Copilot w/ Copilot w/o Copilot w/ Copilot

Noisy 62.33± 2.49 75.67±2.05 37.33± 2.05 20.00±3.27
Laggy 42.00± 4.90 74.33±2.87 58.00± 4.90 21.33±4.50

Zero 0.00± 0.00 40.67± 2.62 100.00± 0.00 6.67± 1.70
Random 0.00± 0.00 16.33± 3.09 100.00± 0.00 68.00± 1.63
Expert 99.00± 0.82 94.67± 2.05 1.00± 0.82 5.33± 2.05

Lunar Lander and Lunar Reacher. We see that adopting our
copilot significantly improves the success and crash rates for
all but the expert policy (as expected). We note that each task
involves reaching or landing on a randomly sampled target that
is not known to the copilot. Consequently, one can not expect
the copilot to have significant effect on the success rate of the
Random or Zero pilot. Nevertheless, the results show that our
copilot improves their success rates with performance similar
to that of full diffusion (γ = 1.0) and significantly decreases
the rate at which the pilots crash.

For the Block Pushing task, the Laggy and Noisy policy
are based on an expert whose intent is always to push the
block to the green zone, which we refer to as the correct goal.
The set of state-action pairs on which we trained the diffusion
model also include trajectories that reach the red zone. As
such, without knowledge of the pilot’s goal, the copilot may
generate actions that push the block into the red zone (referred
to as the incorrect goal), causing the episode to terminate. As
we see in Table II, our copilot improves the rate at which all
but an expert pilot reach the correct goal, while decreasing the
rate at which episodes timeout without reaching any goal.

D. The effects of the forward diffusion ratio γ

The forward diffusion ratio γ determines how many steps
of forward diffusion process to apply on pilot’s action aht .
This value changes the balance of interpolating between source
and target distributions, which in turn controls the trade-off
between fidelity and conformity of an action. In this section,
we demonstrate this trade-off with different γ values in various
environments. We deployed our copilot with various surrogate
pilots as discussed in Section III-B for each γ value.

Figure 5 shows the effect of γ for the 2D Control domain.
Although the copilot is trained on demonstrations for both
goals, the pilot’s goal is fixed to the left. As γ increases, we
see that the number of trajectories that reach the correct goal
increases. Qualitatively, we also see that the stochasticity of
the trajectories lessens, and the paths towards the goal become
smoother. However, when γ is too high, the copilot ignores
the pilot’s actions. Without knowledge of the pilot’s goal, the
copilot ends up distributing trajectories evenly between the left
and right goals, consistent with the set of trajectories on which
the model was trained.



Figures 6 and 7 summarize the results on Lunar Lander and
Lunar Reacher, respectively, by categorizing the trajectories
into success, crash and float. Here, float denotes a trajectory
where the spaceship does not crash nor go out of bounds, but
nevertheless fails to complete the task within the time limit.

In all cases, we observe that the success rate follows a
distinct pattern. First, the success rate monotonically increases
with γ as the copilot improves task performance. After
reaching a peak success rate at a critical value of γ, the
success rate gradually decreases. The drop in the success rate
reflects the copilots infidelity to the user’s intent. The pilot’s
original actions provide a signal of which goal or landing pad
is correct. When γ is too large, the copilot totally ignores
the pilot’s actions and instead chooses to land in a manner
following the copilot’s original training distribution.

In general, the crash rate monotonically decreases with γ,
with the exception of Lunar Reacher. This demonstrates that
the quality of the generated actions improves as γ increases.
In Lunar Reacher, many of the demonstrations go straight to a
target, which is often placed at the edge of the the environment.
Consequently, if the agent overshoots and misses the target, it
is very likely that it will go out of bounds, which is counted as
a crash. This is likely why increasing γ does not necessarily
result in lower crash rates for Lunar Reacher.

IV. RELATED WORK

Shared autonomy has appeared in many problem domains,
including remote telepresense [12, 22, 41], assistive robotic
manipulation [30, 35, 44], and assistive navigation [5, 21]. In
shared autonomy, one of the most persistent challenges has
been correctly identifying the pilot’s intentions or goals.

Early work sidesteps this challenge by assuming a priori
knowledge of the pilot’s goals [11, 31]. Recent work has
managed to relax this assumption by treating the pilot’s goal as
a latent random variable which can be inferred from environ-
mental observations and pilot actions [1, 7, 15, 27, 29, 31, 34,
37, 53]. In spite of this forward progress, these methods still
assume knowledge about some combination of the transition
dynamics, the pilot’s goals, or pilot’s policy, making them
difficult to deploy in many unstructured scenarios.

Reddy et al. [39], and subsequently [47, 43] introduce
model-free deep reinforcement learning (RL) to the shared
autonomy setting. Because these methods are model free,
knowledge of environment dynamics is no longer required,
allowing one to train a policy that is not limited to a specific
model class. Several follow up works have adapted deep RL
to a variety of shared autonomy problems [16, 40, 36, 9].

To the best of our knowledge, all previous work on shared
autonomy with deep RL either explicitly or implicitly assumes
a human-in-the-loop setting. In particular, the main training
loop typically contains a step to query a pilot (i.e., human
user) to obtain its action. This constraint often makes training
inefficient or impractical. Chen et al. [9] addresses this issue
by proposing a two-phase training scheme. In the first phrase,
an autonomous agent learns a task-conditioned policy that
can be helpful for assisting a pilot. This is followed by

the second phase, which incorporates sparse feedback from
humans. Although such approach improves the efficiency of
the training pipeline, it does not change the fact that these
methods inherently rely on human feedback.

Diffusion models [45] have recently been applied to many
problems including image generation, image editing, text-
conditioned image generation and video generation. In the
field of robotics, Janner et al. [28] trained a diffusion model
over trajectories, demonstrating that diffusion is capable of
generating a diverse set of trajectories reaching a goal location.
Anonymous [4] applies diffusion models to imitation learning.
Meanwhile, Wang et al. [51] show that the policy parameter-
ized with diffusion can generate a multi-modal distributions
over possible actions. As far as we are aware, ours is the
first approach that uses diffusion models in a shared control
scenario, where a copilot learns from expert demonstrations
and provides guidance by denoising noisy pilot action.

The core idea of our approach is in the partial forward and
reverse diffusion that enables us to generate an output that
effectively interpolates between the original input and one
from target distribution that we train our diffusion models
on. Although we independently came up with this idea, a
others have explored a similar approach for image editing [33].
Related, many recent papers have consider running reverse dif-
fusion from some intermediate step rather than pure Gaussian
noise [32, 50, 38, 52], as we do in this paper.

V. CONCLUSION

In this paper, we presented a new approach to shared
autonomy based on diffusion models. Our approach only
requires access to demonstrations that are representative of
desired behavior, and does not assume access to or knowledge
of the user’s policy, reward feedback, or knowledge of the
goal space or environment dynamics. Integral to our approach
is its modulation of the forward and reverse diffusion pro-
cesses in a manner that seeks to balance the user’s desire
to maintain control authority with the benefits of generating
actions that are consistent with the distribution over desired
behaviors. We evaluated our copilot on various continuous
control environments and demonstrated that our diffusion-
based copilot generalizes across a variety of pilots, improving
their performance, while preserving their intention. We further
presented an analysis of the effects of different degrees of
partial diffusion on task performance. One limitation of our
approach is that there is no component that explicitly addresses
the likely mismatch in state distributions between Ppilot(s)
and Ptarget(s). Intuitively, it is very likely that the target
state visitation distribution (i.e., expert demonstrations) is
different from that of the pilot. However, our empirical results
suggest that this is not a critical limitation, possibly because
executing corrected actions tends to encourage the agent to
visit states that are close to those visited as part of the expert
demonstrations. One means of addressing this is to design
a goal-conditioned policy that can navigate itself to an in-
distribution state at test time. We leave this for a future work.
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APPENDIX A
MODEL ARCHITECTURE AND HYPERPARAMETERS

We implement the state-conditioned denoising network
ϵθ(at, k | st) that makes up the diffusion model as a 4-
layer multi-layer perceptron (MLP) with latent dimension
hdim = 128 and softplus [17] activation after every layer
except for the last one. The network outputs a vector that has
same dimension as in the input. Each layer is conditioned on a
diffusion timestep k that looks up a corresponding embedding
with dimension hdim = 128, and is subsequently fused with
the output of the linear layer by an element-wise product. To
accommodate its conditioning on st, our denoising network
works on a concatenation of state-action pairs (st,at), and
during training, we add Gaussian noise only to the action
component to produce a target output. The input x and the
target y are then follow as

x = (st,at + ϵ), ϵ ∼ N (0, I) (11a)
y = (0, ϵ). (11b)

We generate the set of demonstrations used to train our
diffusion model by collecting 100k transitions for each goal in
the 2D Control environment using the scripted expert policy
provided in the original implementation [19], 3M transitions
for each goal in the Block Pushing environment using the
pretrained expert, and 10M transitions for Lunar Lander and
Lunar Reacher using the corresponding pretrained expert.
When we collect expert demonstrations, we filter out episodes
that do not succeed, effectively making the quality of the
demonstrations better than the original expert. This explains
why the assisted expert often performs better than the expert
(e.g., Table I—Lunar Reacher).

We adopt a publicly available implementation of
DDPM [20]. For the sake of faster action generation,
we set the number of diffusion steps to K = 50, and use
settings of βmin = 10−4 and βmax = 0.26 with sigmoid
scheduling.

A publicly available implementation of our method to-
gether with video demonstrations are available at https://
diffusion-for-shared-autonomy.github.io/.

APPENDIX B
EFFECT OF γ FOR DIFFERENT SURROGATE PILOTS

As discussed in Section III-B, we investigate the effec-
tiveness of our shared autonomy algorithm when used in
conjunction with pilots that seek to emulate the deficiencies
typical of human control. Following previous work [39, 43],
we employ two surrogate policies for evaluation, namely a
Laggy pilot and a Noisy pilot, both of which are corrupted
versions of a single expert.

At each time step, with probability pnoisy, the Noisy pilot
samples an action from a uniform distribution over the action
space, and otherwise executes an action sampled from the
expert policy. Similarly, the Laggy pilot repeats its previous
action at each timestep with probability plaggy, and otherwise
carries out an action drawn from the expert policy. We

evaluate our shared autonomy algorithm for pilots with a broad
range of different parameters pnoisy ∈ {0.2, 0.3, . . . , 0.8, 0.9}
and plaggy ∈ {0.2, 0.3, . . . , 0.8, 0.9} for Lunar Lander, Lunar
Reacher, and Block Pushing.

A. Lunar Lander and Lunar Reacher

Figure 9 plots the effect of different settings for the forward
diffusion ratio γ in terms of success, crash, and float rates
on Lunar Lander for different parameterizations of the Noisy
pilot. At the smallest noise setting pnoisy = 0.2, the Noisy
pilot is not significantly worse than the expert pilot without
assistance (γ = 0.0). The Noisy pilot successfully lands
at the goal approximately 66% of the time compared to
approximately 78% for the expert pilot, and crashes (or goes
out of bounds) approximately 19% of the time compared to
approximately 12% for the expert pilot. As the noise level
increases, the performance of the noisy pilot significantly
deteriorates without assistance—the pilot rarely lands and
instead either crashes (or goes out-of-bounds) or floats around
until the episode times out. However, for each parameterization
of the Noisy pilot, we see that the assistance of the copilot
gives rise to a noticeable increase in task success rate and
decrease in crash rate as we increase the forward diffusion
ration to γ = 0.4. As the forward diffusion ratio increases
further, the success rate decreases as expected given that the
copilot does not have knowledge of the goal (i.e., the landing
location). In this case, the copilot chooses actions that are
consistent with the different goals that one or more previous
experts reached. At the same time, we see only a slight or
no increase in the crash rate as the forward diffusion ratio
increases, particularly for pilots with higher noise settings.

Figure 10 presents the results for the same set of exper-
iments on Lunar Lander with different parameterizations of
the Laggy pilot. Consistent with previous work [39], Lunar
Lander and, as we will see, Lunar Reacher are more tolerant of
repeated actions than they are of noisy actions. Consequently,
the performance of Laggy Pilots is only slightly worse than
that of an expert pilot until plaggy exceeds 0.8. As with the
Noisy pilot, we see that providing a Laggy pilot with the
assistance of a copilot increases the task success rate, while
decreasing the crash rate up to a forward diffusion ration of
γ = 0.4 for all parameterizations of the Laggy pilot. Increasing
the forward diffusion ratio beyond γ = 0.4 decreases the
success rate since the copilot does not have access to the pilot’s
goal, while the crash rate increases only slightly.

Figure 11 plots the performance of a Noisy pilot on Lunar
Reacher for different noise settings. As with Lunar Lander,
the success rate of the unassisted Noisy pilot is similar to that
of the expert pilot when pnoisy is low, yet for pnoisy ≥ 0.6
the success rate is below 20% and the pilot often goes out-
of-bounds as indicated by the high crash rate. Again, we see
that the assistance of a copilot increases the task success rate
while decreasing the crash rate with a clear peak at γ = 0.4 for
all but the highest noise settings, for which performance only
changes slightly as γ approaches 1.0. Again, this decrease in
success rate is expected since without access to the region that
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https://diffusion-for-shared-autonomy.github.io/
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Fig. 9: Lunar Lander Performance as a function of the forward diffusion ratio γ for a noisy pilot with noise values ranging
from (a) pnoisy = 0.2 to (h) pnoisy = 0.9. In all plots, the dashed blue line denotes the success rate of the expert pilot, while
the dotted blue line is the success rate of our model when performing “full” diffusion (i.e., γ = 1.0) on an action sampled
from a zero-mean isotropic Gaussian distribution, which we refer to as a “Random” pilot in the paper.
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Fig. 10: Lunar Lander performance as a function of the forward diffusion ratio γ for a laggy pilot with values ranging from
(a) plaggy = 0.2 to (h) plaggy = 0.9. In all plots, the dashed blue line denotes the success rate of the expert pilot, while the
dotted blue line is the success rate of our model when performing “full” diffusion (i.e., γ = 1.0) on an action sampled from
a zero-mean isotropic Gaussian distribution, which we refer to as a “Random” pilot in the paper.
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(a) pnoisy = 0.2
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Fig. 11: Lunar Reacher performance as a function of the forward diffusion ratio γ for a Noisy pilot with noise values ranging
from (a) pnoisy = 0.2 to (h) pnoisy = 0.9. In all plots, the dashed blue line denotes the success rate of the expert pilot, while
the dotted blue line is the success rate of our model when performing “full” diffusion (i.e., γ = 1.0) on an action sampled
from a zero-mean isotropic Gaussian distribution, which we refer to as a “Random” pilot in the paper.

the pilot is attempting to reach, the copilot chooses actions that
are consistent with the set of expert demonstrations on which
the diffusion model was trained.

Figure 12 plots the performance of the Laggy pilot on the
Lunar Reacher task for different settings of plaggy. Similar
to Lunar Lander, we find that Lunar Reacher is tolerant of
an otherwise (near-)expert policy that randomly repeats its
previous actions. Due to the nature of the task, the success
rate of the Laggy Pilot is only slightly worse than that of
the expert until plaggy exceeds 0.8. For all parameterizations
of the Laggy pilot, we see that the assistance of a copilot
with γ = 0.4 decreases the crash rate, while simultaneously
maintaining or, in the case of plaggy ≥ 0.8, increasing the
success rate.

Table III expands upon the analysis presented in Table I and
makes explicit the effect of different settings for the forward
diffusion ratio between γ = 0.0 (no assistance), our chosen
setting of γ = 0.4, and to γ = 1.0 (full assistance) when paired
with different pilots. Consistent with the plots in Figures 9–
12, setting the forward diffusion ratio to γ = 1.0 results in
similar performance across all pilots both in terms of success
rate and crash rate, consistent with the copilot selecting actions
that conform to the distribution over expert actions.

B. Block Pushing
Figure 13 provides plots of the performance of the Noisy

pilot on the Block Pushing task in terms of the correct goal,
incorrect goal, and timeout rates for different settings of pnoisy.

When the noise level is at or below 0.5, the Noisy pilot
pushes the block to the correct goal more than 75% of the
time without assistance (vs. nearly 100% for the expert) and
never pushes the block to the incorrect goal. As the noise level
increases from pnoise = 0.6, the rate at which the unassisted
Noisy pilot times out significantly increases, while the rate
with which it reaches the correct goal precipitously drops for
pnoisy ≥ 0.8. With the assistance of a copilot, the rate at which
the pilot pushes the block to the correct goal increases and
the timeout rate decreases, both significantly, as the forward
diffusion ratio increases to γ = 0.2 for Noisy pilots with
pnoisy ≥ 0.6. As the forward diffusion ratio increases further
and information about the correct goal is diminished, the
assisted policy reaches one of the two candidate goals with
roughly equal likelihood, while the timeout rate remains low,
consistent with the set of expert demonstrations. For Noisy
pilots with pnoise ≤ 0.5, assistance does not negatively affect
performance until the forward diffusion ratio exceeds γ = 0.2.

Figure 14 presents the performance of the Laggy pilot
as a function of the forward diffusion ratio γ for different
settings of plaggy. The behavior is similar to that of the Noisy
pilot (Fig. 13) except that increasing the level of copilot
assitance to γ = 0.2 improves the correct goal rate for all
parameterizations of the Laggy pilot. Again, as the forward
diffusion ratio approaches γ = 1.0, the copilot effectively
chooses randomly between the two goals, while maintaining
a low timeout rate.
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Fig. 12: Lunar Reacher performance as a function of the forward diffusion ratio γ for a Laggy pilot with values ranging from
(a) plaggy = 0.2 to (h) plaggy = 0.9. In all plots, the dashed blue line denotes the success rate of the expert pilot, while the
dotted blue line is the success rate of our model when performing “full” diffusion (i.e., γ = 1.0) on an action sampled from
a zero-mean isotropic Gaussian distribution, which we refer to as a “Random” pilot in the paper.
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Fig. 13: Block Pushing performance in terms of the correct goal, wrong goal, and timeout rates as a function of the forward
diffusion ratio γ for a Noisy pilot with noise values ranging from (a) pnoisy = 0.2 (h) pnoisy = 0.9. In all plots, the dashed blue
line denotes the success rate of the expert pilot, while the dotted blue line is the success rate of our model when performing
“full” diffusion (i.e., γ = 1.0) on an action sampled from a zero-mean isotropic Gaussian distribution, which we refer to as a
“Random” pilot in the paper.



TABLE III: Success and crash/out-of-bounds (OOB) rates on Lunar Lander and Lunar Reacher for different pilots with and
without assistance, where we show the results for our chosen value for γ = 0.4 as well as the result of using full diffusion
(γ = 1.0), which has the effect of removing information about the goal provided by the pilot. The plots corresponding to the
data in the table are figure 6 and figure 7. Each entry corresponds to 10 episodes across 30 random seeds. Note that the Zero
and Random pilots have no knowledge of the goal.

Success Rate Crash/OOB Rate
Pilot w/o Copilot

(γ = 0.0)
w/ Copilot (ours)

(γ = 0.4)
w/ Copilot
(γ = 1.0)

w/o Copilot
(γ = 0.0)

w/ Copilot (ours)
(γ = 0.4)

w/ Copilot
(γ = 1.0)

Lunar Lander

Noisy 20.67± 4.50 68.00± 5.35 29.00± 2.94 28.33± 2.62 7.67± 2.87 18.33± 4.92
Laggy 21.33± 2.05 75.00± 3.56 26.33± 4.78 76.67± 2.49 9.67± 3.86 15.67± 0.94

Zero 0.00± 0.00 27.00± 0.82 28.00± 2.16 100.00± 0.00 19.00± 2.94 13.33± 2.49
Random 0.00± 0.00 25.00± 4.32 27.67± 1.70 100.00± 0.00 19.33± 5.25 15.67± 1.25
Expert 77.67± 2.62 78.67± 2.87 29.33± 6.18 12.33± 0.94 8.00± 1.63 15.33± 1.70

Lunar Reacher

Noisy 14.33± 2.49 45.33± 3.30 30.67± 4.11 77.33± 3.09 38.00± 2.94 47.00± 3.56
Laggy 30.67± 5.56 55.33± 6.13 30.67± 2.62 69.33± 5.56 31.33± 2.87 45.67± 0.94

Zero 0.00± 0.00 19.67± 2.62 31.00± 6.98 100.00± 0.00 58.33± 3.09 45.33± 5.56
Random 4.33± 1.89 22.33± 2.87 30.00± 4.08 95.33± 1.70 59.00± 0.82 45.00± 2.16
Expert 49.33± 4.78 55.00± 2.16 28.67± 4.50 44.00± 3.56 31.67± 2.87 50.00± 1.41

TABLE IV: Correct goal and timeout rates on the Block Pushing task for different pilots with and without assistance. where
we show the results for our chosen value for γ = 0.2 as well as the result of using full diffusion (γ = 1.0), which has the
effect of removing information about the goal provided by the pilot. The plot corresponding to the data in the table is figure
8. Each entry corresponds to 10 episodes across 30 random seeds. Note that the Zero and Random pilots have no knowledge
of the goal.

Correct Goal Rate Timeout Rate
Pilot w/o Copilot

(γ = 0.0)
w/ Copilot (ours)

(γ = 0.2)
w/ Copilot
(γ = 1.0)

w/o Copilot
(γ = 0.0)

w/ Copilot (ours)
(γ = 0.2)

w/ Copilot
(γ = 1.0)

Noisy 62.33± 2.49 75.67± 2.05 52.67± 7.41 37.33± 2.05 20.00± 3.27 5.67± 1.25
Laggy 42.00± 4.90 74.33± 2.87 53.33± 4.19 58.00± 4.90 21.33± 4.50 5.67± 1.70

Zero 0.00± 0.00 40.67± 2.62 52.33± 0.47 100.00± 0.00 6.67± 1.70 3.67± 2.36
Random 0.00± 0.00 16.33± 3.09 52.00± 3.74 100.00± 0.00 68.00± 1.63 4.33± 2.05
Expert 99.00± 0.82 94.67± 2.05 51.00± 2.45 1.00± 0.82 5.33± 2.05 5.67± 2.49
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Fig. 14: Block Pushing performance in terms of the correct goal, wrong goal, and timeout rates as a function of the forward
diffusion ratio γ for a Laggy pilot with values ranging from (a) plaggy = 0.2 to (h) plaggy = 0.9. In all plots, the dashed blue
line denotes the success rate of the expert pilot, while the dotted blue line is the success rate of our model when performing
“full” diffusion (i.e., γ = 1.0) on an action sampled from a zero-mean isotropic Gaussian distribution, which we refer to as a
“Random” pilot in the paper.
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