
STACKGEN: Generating Stable Structures from Silhouettes via Diffusion

Luzhe Sun∗ Takuma Yoneda∗ Samuel W. Wheeler Tianchong Jiang Matthew R. Walter

Abstract— Humans naturally obtain intuition about the in-
teractions between and the stability of rigid objects by ob-
serving and interacting with the world. It is this intuition
that governs the way in which we regularly configure objects
in our environment, allowing us to build complex structures
from simple, everyday objects. Robotic agents, on the other
hand, traditionally require an explicit model of the world that
includes the detailed geometry of each object and an analytical
model of the environment dynamics, which are difficult to
scale and preclude generalization. Instead, robots would benefit
from an awareness of intuitive physics that enables them to
similarly reason over the stable interaction of objects in their
environment. Towards that goal, we propose STACKGEN—a
diffusion model that generates diverse stable configurations of
building blocks matching a target silhouette. To demonstrate
the capability of the method, we evaluate it in a simulated
environment and deploy it in the real setting using a robotic
arm to assemble structures generated by the model. Our code
is available at https://ripl.github.io/StackGen.

I. INTRODUCTION

Understanding the physics of a scene is a prerequi-
site for performing many physical tasks, such as stacking,
(dis)assembling, and moving objects. Humans can intuitively
assess and predict the stability of structures through a
combination of visual cues, force feedback, and experiential
knowledge. On the other hand, robots lack natural multi-
modal sensory integration and an understanding of intuitive
physics. Robots have traditionally relied upon a world model
that includes a representation of the detailed geometry of
the objects in the environment and an analytical model of
the dynamics that govern their interactions. This dependency
poses significant challenges to deploying robotic agents in
unprepared environments.

The ability to compose a diverse array of blocks into
a stable structure has a long history as a testbed to study
an agent’s understanding of object composition and interac-
tion [1, 2, 3, 4]. While seemingly primitive, this ability comes
with many practical implications such as robot-assisted con-
struction [5, 6, 7, 8, 9], and would serve as a backbone for
downstream applications where an agent deals with complex
sets of real world objects.

Contemporary approaches to building 3D structures based
upon an intuitive understanding of physics utilize the pre-
dicted forward dynamics of a scene as part of a planner

L. Sun, T. Yoneda, T. Jiang, and M.R. Walter are with the
Toyota Technological Institute at Chicago (TTIC), Chicago, IL USA,
{luzhesun,takuma,tianchongj,mwalter}@ttic.edu.
S.W. Wheeler is with Argonne National Laboratory, Lemont, IL, USA,
swwheeler@anl.gov.

Diffusion
Model

Noisy
Poses

Duffision
Timestep

Block Prediction

Sketch

Buildng a
Real StackRequired Blocks

Stack Example Silhouette

Block
Configuration
(Generated)

(or)

Fig. 1: STACKGEN consists of a diffusion model that takes
as inputs a target structure silhouette and a list of available
block shapes. The model then generates a set of block poses
{p̂1, . . . p̂k} that construct a stable structure consistent with
the target silhouette. The resulting structure can then be
constructed using a robot arm.

that combines building blocks into a target structure. This
typically involves first training a forward dynamics model
that serves as the intuitive physics engine, and then using
this model to simulate the behavior of candidate object place-
ments via a form of rejection sampling. Such an approach
comes at a high cost as it requires searching through a large
space of coordinates and modeling the dynamics for each
possible block placement.

Rather than training a forward dynamics model, we con-
sider learning and generating a joint distribution over the
SE(3) poses of objects composed to achieve a stable 3D
structure (Fig. 1). We condition this distribution on a user-
provided specification of the structure, allowing them to
control the generation at test time.

Inspired by its success in computer vision [10, 11, 12,
13, 14] and, more recently, robotics domains [15, 16, 17],
we employ conditional diffusion models [18], a family
of generative models shown to perform well in various
generation domains, in our case for producing stable 6-
DoF object poses. Similar in spirit with those approaches
that control image generation via spatial information such
as sketch or contour [19], we ask a user to provide a
silhouette that vaguely describes the desired structure, and
use it as a conditioning signal. Different from Zhang et al.

https://ripl.github.io/StackGen

[19], we simply train a conditional diffusion model built on
the Transformer architecture. We should note that, unlike
standard image generation, our approach generates a set
of poses. And we aim to generate those that result in a
physically stable structure.

Our model (STACKGEN) reasons over the 6-DoF pose
of different building blocks to realize their composition as
part of a stable 3D structure consistent with different user-
provided target specifications. In the following sections, we
describe a Transformer-based architecture that underlies our
diffusion model and the procedure by which we generate
stable block configurations for training and evaluation. We
evaluate the capabilities of STACKGEN through baseline
comparisons and as well as real-world experiments that
demonstrate its benefits to real-world scene generation with
a UR5 arm.

II. RELATED WORK

A. Learning Stability from Intuitive Physics

Similar to our work, several efforts [2, 3, 15] consider
the interaction of relatively simple objects to investigate
the notion of intuitive physics. When considering visual
signals for assessing stability, ShapeStacks [20] successfully
learned the physics of convex objects in a single-stranded
stacking scenario. This is achieved by vertically stacking
objects, calculating their center of mass (CoM), and scaling
up the dataset to train a visual model via supervised learning,
enabling stability prediction prior to stacking. However,
calculating the CoM for combinations in multi-stranded
stacks proves to be much less straightforward. Another
form of intuitive physics involves the ability to predict how
the state of a set of objects will evolve in time, which
includes concept of continuity and object permanence. This
has motivated the development of benchmarks that measuring
models’ ability on such tasks called violation-of-expectation
(VoE) [21, 22, 23, 24]. In the context of robotics, Agrawal
et al. [25] collect video sequences of objects being poked
with a robot arm. Using this dataset, they train forward and
inverse dynamics models from pixel input and demonstrate
that the model enables the robot to reason over an appropriate
sequence of pokes to achieve a goal image. Other work has
similarly followed suit [26, 27].

B. Diffusion Models for Pose Generation

Given their impressive ability to learn multimodal distri-
butions, a number of works employ diffusion models [28]
to learn distributions over the SE(3) poses in support of
robot planning [29, 30, 31]. Urain et al. [29] use conditional
diffusion models to predict plausible end-effector positions
conditioned on target object shapes for robot manipulation.
Simeonov et al. [30] use a diffusion model to predict the
optimal placements of objects in a scene by modeling the
spatial relationships between objects and their environment,
identifying target poses for tasks like shelving, stacking,
or hanging. Their method incorporates 3D point cloud re-
construction as contextual information to ensure that the

predicted poses are both functional and feasible in real-
world scenarios. Liu et al. [32] and Xu et al. [33] com-
bine large language models with a compositional diffusion
model to analyze user instructions and generate a graph-
based representation of desired object placements. They then
predict object arrangement patterns by optimizing a joint
objective, effectively merging language understanding with
spatial reasoning.

C. Automated Sequential Assembly

Relevant to our data generation procedure, Tian et al. [34]
propose an assembly method (ASAP) that relies on a reverse
process of disassembly, where each component is placed in
a unique position to guarantee physical feasibility. However,
this approach does not account for the potential structural
instability that might arise from multiple combinations, since
the assembly scenario assumes a one-to-one mapping of
components to specific locations.

In contrast, our work addresses the challenge of finding
a structure that maintains gravitational stability using only a
2D silhouette through a one-to-many mapping approach. This
method ensures that the structural stability is retained and
accurately reproduced when transitioning to a 3D environ-
ment. Our focus is on the generation and verification of struc-
turally stable block configurations rather than optimizing the
assembly sequence. Similar to the method of ASAP, which
generates step-by-step assembly sequences where intermedi-
ate configurations remain stable under gravitational forces,
we propose a “construction by deconstruction” method that
enables scalable data generation by predicting diverse stable
configurations, without relying on predefined assembly paths.

In this section, we describe our diffusion-based framework
for generating SE(3) poses for blocks that together form a
stable structure consistent with a user-provided specification
of the scene. We then discuss the procedure for training the
model, including an approach to producing a training set that
contains a diverse set of stable block configurations.

III. METHOD

A. Diffusion Models for SE(3) Block Pose Generation

Our model (Fig. 2) generates the SE(3) block poses
necessary to create a 3D structure that both matches a
given condition (e.g., a silhouette) and is stable. Underlying
our framework is a Transformer-based diffusion model that
represents the distribution over stable 6DoF poses, without
explicitly specifying the number, type, or position of its
constituent blocks. In this way, the model employs a reverse
diffusion process to produce block poses that collectively
form a stable structure. Separately, we train a convolutional
neural network (CNN) to predict the number and type of
blocks necessary for the construction based on the target
silhouette. At test-time, we employ the CNN to predict the
block list, and then provide this list and the target silhouette
as input to the diffusion model. The diffusion model then
samples potential block poses composing a stable structure.

We adopt the denoising diffusion probabilistic model
(DDPM) [28] as the core framework underlying STACKGEN.

A probabilistic diffusion model [35] is a generative model
comprised of a forward diffusion process and a reverse dif-
fusion process. The forward process is a first-order Markov
chain that introduces noise to samples drawn from a data
distribution p1 ∼ q(p1), while the reverse process is a
Markov chain that iteratively denoises a noisy input pT ∼
N (0, I). The manner by which the model is trained to add
and remove noise allows it to generate samples from the
target data distribution q(p1).

In the case of STACKGEN, p1 = {p1
1,p

1
2, . . . ,p

1
k} is the

set of object poses, where p1
i ∈ R6 is the SE(3) pose of

block i, and q(p1) is the distribution over the poses of the
blocks that together form a stable stack.1 Following DDPM,
STACKGEN uses a forward diffusion process that injects
noise as

p̃t
i =

√
ᾱtp

1
i +

√
1− ᾱtϵi, ϵi ∼ N (0, I), (1)

where t ∼ Unif{1, 2, . . . , T} is the diffusion timesetep that
defines the noise scale, ᾱt is a coefficient determined by the
noise schedule, and ϵi is the noise injected in each step.
p1
i is the stable pose of block i, p̃t

i is noise-injected p1i at
timestep t. STACKGEN then provides the noisy poses p̃t

i (i =
1, 2, . . . , k) to our denoising network (the Transformer in
Figure 2) Dθ along with the diffusion timestep t, shapes
embeddings {s1, . . . , sk} and the silhouette of the blocks S.
This results in the expression

ϵ̂1:k = Dθ(p̃1:k, t, s1:k, S), (2)

where the notation X1:k is equivalent to {X1, . . . , Xk}, and
ϵi is a predicted pose noise for the i-th block. With the
predicted noises, the training objective for a single sample is

1

k

k∑
i=1

∥ϵi − ϵ̂i∥2. (3)

We sample diffusion timestep t uniformly random from
{1, 2, . . . , T} at each training step.

Once the denoising network is trained, the sampling
procedure starts with sampling a noisy pose from Gaussian
distribution

p̃T
i ∼ N (0, I).

From this initial noises, we iterate the following step from
t = T to 1

p̃t−1
i =

1√
αt

(
p̃t
i −

1− αt√
1− ᾱt

ϵ̂i

)
+ σtz, (4)

where ϵi is given by Eq. 2 and z ∼ N (0, I) if t > 1,
otherwise z = 0. The resulting p̃1

1:k are the generated stable
poses.

1We normalize poses before applying the diffusion framework. During
inference, the generated poses are unnormalized accordingly.

Poses

Padding
Tokens

p̃t1

p̃t
k

p̃t2

⋯ Po
se

Pr

oj
ec

tio
n

⋯

Diffusion
Timestep

Shapes
Embeddings

ts1

sk t

+

+

+

⋯
⋯

⋯ Pa
tc

h
Pr

oj
ec

tio
n

Silhouette

Pa
tc

hi
fy

⋯

⋯
⋯

Positional
Encodings

Patch
Embeddings

Poscic

+

+

+

⋯

i1

Tr
an

sf
or

m
er

̂ϵt1

̂ϵt
k

̂ϵt2

Diffuse
 timest

(p̃t
i, ̂ϵt

i) ⇝ p̃t−1
i

⋯

Ignored

Poses

p1

pk

⋯

Padding
Token ⋯

⋯
Tr

an
sf

or
m

e
E

nc
od

er

⋯
⋯

Mean
Pooling

(μ, log Σ)

⋯ Pa
tc

h
Pr

oj
ec

tio
n

+

+

+

⋯
⋯

z

Tr
an

sf
or

m
er

D

ec
od

er

⋯
⋯

Ignore based on
Shape Emb Dim

̂p1
̂p2

̂pk
Predicted
Noise

⋯ ⋯

Po
se

Pr

oj
ec

tio
n

Padding
Tokens

Positional
Encodings

Patch
Embeddings

Positional
Encodings

Shapes
Embeddings

Silhouette

Patchify

+
⋯

Eq.(4)

Pos1

Fig. 2: A visualization of STACKGEN’s Transformer-based
architecture. We first embed noisy poses p̃t

1:k, shapes s1:k
and timestep t to same dimension d, then add them together
to construct object tokens ∈ Rk×d. Then we patchify the
silhouette and embed them to i1:c, sum up with the positional
encoding Pos1:c to construct silhouette tokens ∈ Rc×d. Then
we feed object, padding and silhouette tokens together to our
denoising Transformer Dθ (Eq. 2) in the diagram to predict
noise ϵ̂t1:k. By running Eq.4 to get next reverse state p̃t−1

1:k .

B. Model Architecture

Challenging requirements for the model come from the
nature of the task that 1) the model must be able to work with
a variable number of block poses since different stacks use
different number and shapes of blocks; and that 2) the model
must process inputs from different modalities, including
poses, shapes and silhouette that has spatial information.

Our model (Fig. 2) is built upon the Transformer
architecture [36], which can process input tokens that may
originate from different modalities. To initialize the process,
we use a convolutional neural network (CNN) to predict
the block list of a structure from that structure’s silhouette,
shown in Figure 1. The CNN converts the single channel
mask input into ten channels, followed by thirty residual
layers, max pooling, and two fully connected layers.
For training we uniquely encode the number of cubes,
rectangles, long rectangles and triangles in a structure using
an integer index and proceed by training the CNN Cθ with
parametrization θ to model the joint distribution of block
counts, represented by the class probability of each index,
using the cross-entropy loss

L(D, θ) =
1

|D|
∑

(Si,yi)∈D

− log
exp(Cθ(yi|Si))∑
yk

exp(Cθ(yk|Si))
, (5)

where D = {(Si, yi)} is our labeled training set, Si is the
structure’s silhouette, and yi is the index corresponding to
the structure’s block list. This predicted block list serves as
one of the inputs to the subsequent steps of our model.

Given a scene that contains a stable stack of k blocks,
we extract a list of their poses p1:k ∈ Rk×6 and shape
embeddings s1:k ∈ Rk×d, where d = 512 (Fig. 2). For pose
pi, we use a six-dimensional pose representation that consists
of Cartesian coordinates for translation and exponential coor-
dinates for orientation. The shape embedding si is retrieved
from a codebook that stores unique trainable embeddings for
each shape. The poses are projected onto a d-dimensional
space using an MLP applied independently for each object.
Similarly, we project the the diffusion timestep t ∈ [1, T]
onto a d-dimensional embedding space. The pose, shape, and
diffusion timestep embeddings are summed for each object to
obtain k object tokens. In order to handle a variable number
of blocks, we use a fixed number of N object tokens to the
Transformer encoder and pad the remaining N − k tokens
with zero vectors as necessary.

The silhouette S of the block structure is given as a binary
image I of size 64× 64. Following Dosovitskiy et al. [37],
we split the binary image I into c = 16 patches, each of
size 16 × 16, and independtly encode each patch using a
two-layer MLP to obtain silhouette tokens i1:c ∈ Rc×d. We
add sinusoidal positional embeddings [36] Pos1:c ∈ Rc×d to
the silhouette tokens to retain spatial information. We then
sum the patch embeddings and positional encoding together
to get c silhouette tokens.

STACKGEN then concatenates the object, padding, and
silhouette tokens and feeds them into a six-layer Transformer
encoder. The Transformer uses a hidden dimension d = 512
and expands the representation by the feedforward network
with dimension dff = 2048. In the self-attention layers, we
use h = 8 self-attention heads, where each head has a
dimension of d

h = 64.
At the last layer of the encoder, STACKGEN linearly

projects each contextualized block token back to pose space
(R6) and compute mean squared error (MSE) loss with
original noise added to the corresponding pose to conduct
supervised learning, following the DDPM framework. Fig-
ure 2 summarizes this process and architecture.

In the experiments reported in the paper, STACKGEN uses
N = 10 tokens, T = 50, and a linear noise schedule from
[10−4, 0.189] based on hyperparameter tuning.

C. Generating Data

To train a model that can generate diverse set of stable
block poses, the quality and diversity of the dataset is crucial.
We seek to have an algorithm that synthetically samples
various stable block configurations to generate such dataset
at scale. If we place excessive emphasis on diversity of the
block stacks, a naive and general approach could be to spawn

r emove remove remove

remove removeremove

Tree Depth = 4

Design Gr id Stack i n Sim ulat i on

...

Exam ples of
Resul t i ng Stacks

Fig. 3: Our strategy (left) to generate diverse set of stable
stacks. After filling the design grid with shapes, we verify
stack stability in simulator, and begin removing each block,
saving the stable stacks. The right part shows some challeng-
ing examples in the dataset.

and drop a randomly selected shape at a random pose in
simulation, wait until it settles and repeat this process until a
meaningful stack gets constructed in the scene (by checking
their height or collisions between blocks, for example). In
the case that this process does not end up in a stack, we
could reject it and start over again, repeating the procedure.
This could potentially lead to a very general and extremely
diverse dataset of block stacking, however, it was found to
be inefficient and impractical.

As an alternative, we employ a “construction by de-
construction” approach that involves starting with a dense
structure comprised of different block shapes, followed by
a block removal process that involves iteratively removing
blocks from the stack until it becomes unstable. While the
initial structure is guided by a pre-defined grid, we find
that the random horizontal displacement and block removal
process creates a diverse set of non-trivial structures.

Concretely, we consider a 4 × 4 grid that serves as a
scaffold for block stack designs. We build the initial dense
structure from the bottom up, whereby we attempt to place
a randomly chosen block (triangles in the top row only)2 in
the current row without exceeding a maximum width of four.
Once at least three cells in a row are occupied, we move on
to the next layer. This results in an initial template of a block
stack. We then convert the template to a set of corresponding
SE(3) poses for the blocks and add a small amount of noise to
their horizontal positions. We then use a simulator to verify
that the stack is stable under the influence of gravity, render
its front silhouette, and add the set of poses along with the
silhouette to the dataset. If the stack falls, we simply reject
the design. We note that the resulting dataset contains the
blocks with slight rotations about the vertical axis, as shown
on the right in Figure 3. This is due to the inaccuracy of

2Throughout this paper we consider four different shapes: {triangle, cube,
rectangle, long rectangle}.

Fig. 4: A (left) reference (i.e., ground-truth) stack with its
silhouette, and (right) a diverse set of structures generated
from the silhouette by our model.

the physics engine, where the blocks keep slightly sliding
and rotating randomly while we run forward dynamics and
wait for the other part of the stack to be stable. Although not
intended, we keep these in the dataset considering that this
randomness helps increase the diversity of the block poses.

For each stack of blocks generated as above, we proceed
to generate additional data points via block removal, whereby
we remove blocks whose absence does not collapse the
structure. From the initial stack of blocks, as depicted in
Figure 3, we try removing each block and simulate the
effect on the remaining blocks in the stack. If the stack
remains stable, we add the resulting set of block poses and
the silhouette to the dataset, and then repeat with another
block. We apply this procedure recursively to each stable
configuration, removing at most four blocks. We note that
the block at the top of the stack is excluded from removal,
and thus data samples always have the height of four cubes.
Following this procedure, we generate 191k instances of
stable block stacks that we then split into training and test
sets using a 9:1 ratio.

IV. EXPERIMENTS

We evaluate the ability of our model to generate a stable
configuration of objects that is consistent with a reference
input that can take the form of an example of the block
structure or a sketch of the desired structure (Fig. 1). We
then present real-world results that involve building different
structures using a UR5 robot arm.

A. Evaluation in simulation

We evaluate our model using a held-out test dataset.
Figure 4 visualizes a diverse set of stacks produced by
STACKGEN for a single silhouette, demonstrating its capa-
bility for multimodal distribution learning.

We aim to evaluate our approach with two metrics: 1) the
proportion of block configurations generated by our method
that are structurally stable; and 2) the consistency of the
generated stacks with the target silhouette. The problem of
generating a stable structure from a given block list and
silhouette can have multiple solutions, so our evaluation
technique samples three sets of block poses for each pair
of silhouette and block list in the test set. We compare our
method against four baselines: two heuristic baselines, the
Brute-Force Baseline and the Greedy-Random Baseline, and

+

+

+

⋯

⋯ ⋯
⋯

Ignore based on
Shape Emb. Dim

̂p2

̂pk

⋯ ⋯

Padding
Tokens

⋯

+

+

Poses

p1

pk

⋯

Padding
Tokens ⋯

⋯
Tr

an
sf

or
m

e
E

nc
od

er

⋯
⋯

Mean
Pooling

(μ, log Σ)

⋯ Pa
tc

h
Pr

oj
ec

tio
n

+

+

+

⋯

z

Tr
an

sf
or

m
er

D

ec
od

er

⋯
⋯

̂p1
̂p2

̂pk

⋯ ⋯

Po
se

Pr

oj
ec

tio
n

Padding
Tokens

Positional
Encodings

Patch
Embeddings

Positional
Encodings

Shapes
Embeddings

Silhouette

Patchify

⋯

⋯⋯

+

+

⋯

Ignore based on
Shape Emb. Dim

̂p1+

Tr
an

sf
or

m
er

Tran-VAE Tran-Reg

Fig. 5: Our learning-based baselines include (left) Tran-VAE:
a Transformer-based VAE model with a two-layer encoder
and four-layer decoder, and (right) Tran-Reg: a Transformer-
based regression model.

two learning-based baselines, the Transformer-Regression
Baseline and the Transformer-VAE Baseline.

1) Brute-Force Baseline: Given a silhouette and a set
of available blocks, this algorithm searches for potential
placement poses of each block by maximizing a silhou-
ette alignment score given by silhouette intersection while
minimizing a collision penalty between predicted blocks. To
achieve a high alignment score, for each block we sample 20
coordinates (xi, 0, zi) where xi and zi are sampled uniformly
from [−3, 3] and {1, 3, 5, 7}, respectively. We perform 20
linear searches from each point along the x-axis in both
directions to find poses with optimal alignment and collision
measures. This algorithm employs a brute-force search over
a discretized space of k × 400 candidate positions, which,
although not NP-hard, is computationally intensive.

2) Greedy-Random Baseline: This approach uses a left-
to-right, bottom-to-top algorithm operating on the structure
silhouette to place blocks. Starting from the lowest layer
to the highest, each layer is assigned a fixed height. The
algorithm measures the distance of the longest consecutive
line of pixels from left to right. It then considers all blocks in
the current block list whose width is less than this distance
and greedily places the longest one. Since this algorithm
is deterministic, we introduce a swap mechanism to add
diversity: with a certain probability σ, the algorithm will
swap two adjacent cubes within the same layer with a
rectangle elsewhere in the silhouette (since two cubes and a
rectangle are of equal length). By controlling the probability
σ, we can adjust the diversity of the generated configurations.
This swap mechanism is also applied to the Brute-Force
baseline to control its variability.

3) Transformer-Regression Baseline: We include a
Transformer-based regression model (Fig. 5 (right)) as a non-
generative, learning-based method. This baseline provides
a means to determine the benefits of using a generative
model to capture the intrinsically multimodal distribution of
block poses conditioned on the silhouette. To ensure a fair
comparison, we train a Transformer with the same number of
layers, number of heads, feedforward dimension, and hidden

Bru
te

Forc
e

Gree
dy

Tra
n-R

eg

Tra
n-VAE

Stac
kGen

30

40

50

60

70

80

Io
U

 V
al

ue
 (%

)

Front IoU
Side IoU
Above IoU
Avg IoU

Bru
te

Forc
e

Gree
dy

Tra
n-R

eg

Tra
n-VAE

Stac
kGen

0

20

40

60

80

100

St
ab

ili
ty

 (%
)

Comparison of IoU and Stability Across Methods

Fig. 6: Bar plots that compare STACKGEN with the baselines
in terms of (left) IoU and (right) stability. All methods use
the CNN-predicted block list.

dimension as the Transformer model in STACKGEN.
4) Transformer-VAE Baseline: The Tran-VAE baseline

(Fig. 5 (left)) employs a Transformer-based variational au-
toencoder with two encoder layers and four decoder layers,
matching the total number of layers (six) in STACKGEN’s
diffusion model. All three learning-based model including
STACKGEN using the same batch size and training epoch to
make fair comparison.

The transformer-based baselines (Tran-Reg and Tran-
VAE) have positional encodings added to the shape embed-
dings, whereas STACKGEN does not. This is because the
diffusion models can differentiate different instances of the
same block by their distinct noisy poses.

To quantify the diversity of predicted poses, we analyze
the predicted results by obtaining a per-layer block list
arranged from left to right. Two constructions are considered
distinct if their layered block lists differ. The diversity score
is then defined as the number of distinct poses sample poses
generated for a given input divided by the total number of
samples taken. For example, Figure 4 contains two scenes
with average diversity score of 5

6 = 83.33%.
For stability evaluation, we spawn blocks according to

their generated poses, observe their subsequent behavior (i.e.,
using a simulator for non-real-world experiments), and check
whether any of the blocks fall to a layer below where they
began, which would lead the sample to be classified as
unstable. To assess silhouette consistency, we extract the
silhouette of the generated structure after running forward
dynamics, compute the intersection over union (IoU) for the
silhouettes from three different views (front, side, and top,
shown in Figure 6 left), and then calculate the average IoU
across these views. Unstable (collapsed) structures receive
an IoU of zero.

We evaluated all five models using our ground-truth and
pretrained CNN block list predictor on 500 scenes, with three
samples generated per scene. Since STACKGEN achieved a
diversity level of 60.47%, we set σ = 0.6 in the Brute-Force
and Greedy-Random baselines to match this diversity level.

Method Stability Diversity Front IoU Avg IoU

Brute Force† 67.33 38.73 62.72 58.45
Brute Force 58.13 39.73 53.39 50.31
Greedy† 68.80 56.53 56.01 53.51
Greedy 67.67 57.53 55.13 52.72

Tran-Reg† 49.73 38.80 44.57 42.97
Tran-Reg 36.13 46.73 31.78 30.86
Tran-VAE† 71.87 56.27 65.46 63.36
Tran-VAE 56.53 60.33 50.19 48.58

STACKGEN† 84.20 66.87 74.39 71.31
STACKGEN 85.20 64.53 75.08 71.84

TABLE I: Comparison of different methods on stability,
diversity, and IoU. All results are presented as percentages
(%). The † label indicates models that used the ground-truth
block list, those without used the CNN-predicted block list.

As shown in Table I and Figure 6, STACKGEN significantly
outperforms the baselines in both stability and IoU.

By virtue of being built upon a diffusion model, which
is able to represent multimodal distributions, STACKGEN
naturally produces a diverse range of stable designs that
meet the silhouette constraints, whereas the heuristic- and
learning-based baselines perform noticeably worse in terms
of the stability of the resulting stacks, their consistency with
the provided sketch (i.e., IoU), and their, perhaps with the
exception of the Tran-VAE baseline, their ability to generate
diverse designs that match the input silhouette. Meanwhile,
although the brute-force method achieves a relatively high
IoU score, it requires evaluating an enormous number of pose
combinations, resulting in an inference times that exceed six
hours (compared to seconds for STACKGEN). Needless to
say, the computational complexity makes them impractical
for real-world robotic applications.

B. Predicted vs. Ground-Truth Block Lists

As a means of evaluating the influence of our CNN-based
prediction of the block list, we compare against methods
that are provided access to the ground-truth block list. Using
500 scenes from the test dataset, we generated three samples
per scene and run each model using the CNN-predicted
block list {ŝ1:k} and the ground-truth block list {s1:k}.
As shown in Table I (models annotated with the † were
provided the ground-truth block list), the performance of
STACKGEN in terms of both stability and IoU differs by no
more than 2% between the the use of the CNN-predicted and
ground-truth block lists, confirming the utility of the CNN-
based predictions for STACKGEN. However, we note the
other learning-based methods appear to be highly sensitive to
variations in the block list, even though the list is sufficient
to generate the stack.

C. Block Stacking in the Real World

To demonstrate that our method performs well in a real-
world environment, we conducted an experiment using toy
blocks and a UR5 robotic arm. Our goal was to build a
pipeline that operates as follows: first, a user provides a
silhouette by either presenting a reference stack of toy blocks

(a) Stack→stack experiments (b) Sketch→stack experiments

Fig. 7: Examples of various stable 3D structures constructed by a UR5 robot arm based upon goal specifications in the form
of (a) images and (b) sketches of the target structure. Note that STACKGEN seeks to match the silhouette of the input and
as a result, the color and type of individual blocks may differ from the reference input.

or drawing a sketch of their desired structure. After extracting
a silhouette from the stack or sketch, our model generates
a stable configuration of blocks that matches the provided
silhouette. Finally, the UR5 arm assembles the generated
stack on a table using real blocks.

1) Stack→stack: In this scenario, a silhouette is extracted
from a stack using a simple rig consisting of an RGBD cam-
era (Realsense 435D), toy blocks, and a white background,
as shown in Figure 1. The rig captures a photo of a stack
of blocks built by the user then makes a binary silhouette
by filtering out background pixels using depth readings and
applying a median filter to smooth the silhouette, removing
any remaining white pixels, finally resizing and pasting the
result onto a 64× 64 canvas.

2) Sketch→stack: In this case, we use the camera to
capture a hand-drawn sketch from a user (Figure 1). It is
converted into a binary image, smoothed using a median
filter, and a bounding box with a 4 × 4 grid is put around
it. We then compute the occupancy to identify whether each
grid cell is fully or partially occupied (e.g., a triangle).

With the extracted silhouettes, we use our pretrained CNN
to predict the block list.3 The diffusion model then generates
candidate block poses. For each block in a set of generated
poses, the UR5 arm executes a pick-and-place operation to
position the block at its corresponding pose. The execution
sequence is set greedily from left to right and bottom up.

Out of the eight cases we tested, this pipeline successfully
built all of the stacks stably, with only minor discrepancies
relative to the original silhouettes (considering the error of
block initial position). However, we note that this does not
imply that our system is flawless. As discussed in Section IV-
A, the model can sometimes generate unstable block config-
urations. Nonetheless, in these real-world experiments, the
success rate indicates that the model is robust enough to
handle potentially out-of-distribution silhouettes effectively.

V. CONCLUSION

In this paper, we presented a new approach that enables
robots to reason over the 6-DoF pose of objects to realize

3For the sketch→stack example, we employ a heuristic method rather
than the CNN to identify the block list.

a stable 3D structure. Given a dataset of stable structures,
STACKGEN learns a distribution over the SE(3) pose of
different object primitives, conditioned on a user-provided
silhouette of the desired structure. At inference time, STACK-
GEN generates a diverse set of candidate compositions that
align with the silhouette while ensuring physical feasibility.

We conducted experiments in a simulated environment and
showed that our approach effectively generates stable struc-
tures following a user-provided silhouette, without modeling
physics explicitly. Further, we deployed our approach in a
real-world setting, demonstrating that the method effectively
and reliably generates stable and valid block structures in a
data-driven manner, bridging the gap between visual design
inputs and physical construction.

REFERENCES

[1] P. W. Battaglia, J. B. Hamrick, and J. B. Tenenbaum, “Sim-
ulation as an engine of physical scene understanding,” Proc.
National Academy of Sciences, vol. 110, no. 45, pp. 18 327–
18 332, 2013.

[2] W. Li, S. Azimi, A. Leonardis, and M. Fritz, “To fall or not to
fall: A visual approach to physical stability prediction,” arXiv
preprint arXiv:1604.00066, 2016.

[3] A. Lerer, S. Gross, and R. Fergus, “Learning physical intuition
of block towers by example,” in Proc. Int’l Conf. on Machine
Learning (ICML), 2016.

[4] J. B. Hamrick, P. W. Battaglia, T. L. Griffiths, and J. B.
Tenenbaum, “Inferring mass in complex scenes by mental
simulation,” Cognition, vol. 157, pp. 61–76, 2016.

[5] V. Helm, S. Ercan, F. Gramazio, and M. Kohler, “Mobile
robotic fabrication on construction sites: DimRob,” in Proc.
IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems
(IROS), 2012.

[6] K. H. Petersen, N. Napp, R. Stuart-Smith, D. Rus, and M. Ko-
vac, “A review of collective robotic construction,” Science
Robotics, vol. 4, no. 28, 2019.

[7] H. Ardiny, S. Witwicki, and F. Mondada, “Construction
automation with autonomous mobile robots: A review,” in
Proceedings of the International Conference on Robotics and
Mechatronics (ICROM), 2015.

[8] A. Gawel, H. Blum, J. Pankert, K. Krämer, L. Bartolomei,
S. Ercan, F. Farshidian, M. Chli, F. Gramazio, R. Sieg-
wart et al., “A fully-integrated sensing and control system
for high-accuracy mobile robotic building construction,” in
Proc. IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems
(IROS), 2019.

[9] R. L. Johns, M. Wermelinger, R. Mascaro, D. Jud,
I. Hurkxkens, L. Vasey, M. Chli, F. Gramazio, M. Kohler,
and M. Hutter, “A framework for robotic excavation and dry
stone construction using on-site materials,” Science Robotics,
vol. 8, no. 84, 2023.

[10] P. Dhariwal and A. Nichol, “Diffusion models beat GANs
on image synthesis,” in Advances in Neural Information
Processing Systems (NeurIPS), 2021.

[11] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Om-
mer, “High-resolution image synthesis with latent diffusion
models,” arXiv preprint arXiv:2112.10752, 2021.

[12] A. Q. Nichol, P. Dhariwal, A. Ramesh, P. Shyam, P. Mishkin,
B. Mcgrew, I. Sutskever, and M. Chen, “GLIDE: Towards
photorealistic image generation and editing with text-guided
diffusion models,” in Proc. Int’l Conf. on Machine Learning
(ICML), 2022.

[13] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford,
M. Chen, and I. Sutskever, “Zero-shot text-to-image genera-
tion,” in Proc. Int’l Conf. on Machine Learning (ICML), 2021.

[14] J. Ho, “Classifier-free diffusion guidance,” arXiv preprint
arXiv:2207.12598, 2022.

[15] M. Janner, S. Levine, W. T. Freeman, J. B. Tenenbaum,
C. Finn, and J. Wu, “Reasoning about physical interactions
with object-oriented prediction and planning,” in Proc. Int’l
Conf. on Learning Representations (ICLR), 2019.

[16] T. Yoneda, L. Sun, G. Yang, B. Stadie, and M. Walter, “To
the noise and back: Diffusion for shared autonomy,” in Proc.
Robotics: Science and Systems (RSS), 2023.

[17] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel,
and S. Song, “Diffusion policy: Visuomotor policy learning
via action diffusion,” arXiv preprint arXiv:2303.04137, 2023.

[18] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilis-
tic models,” in Advances in Neural Information Processing
Systems (NeurIPS), 2020.

[19] L. Zhang, A. Rao, and M. Agrawala, “Adding conditional
control to text-to-image diffusion models,” 2023.

[20] O. Groth, F. B. Fuchs, I. Posner, and A. Vedaldi, “Shapestacks:
Learning vision-based physical intuition for generalised object
stacking,” in Proc. Int’l. Conf. on Computer Vision (ICCV),
2018.

[21] L. S. Piloto, A. Weinstein, P. Battaglia, and M. Botvinick,
“Intuitive physics learning in a deep-learning model inspired
by developmental psychology,” Nature Human Behaviour,
vol. 6, no. 9, pp. 1257–1267, September 2022.

[22] K. Smith, L. Mei, S. Yao, J. Wu, E. Spelke, J. Tenen-
baum, and T. Ullman, “Modeling expectation violation in
intuitive physics with coarse probabilistic object representa-
tions,” in Advances in Neural Information Processing Systems
(NeurIPS), 2019.

[23] R. Riochet, M. Y. Castro, M. Bernard, A. Lerer, R. Fergus,
V. Izard, and E. Dupoux, “IntPhys: A framework and bench-

mark for visual intuitive physics reasoning,” arXiv preprint
arXiv:1803.07616, 2018.

[24] L. S. Piloto, A. Weinstein, T. Dhruva, A. Ahuja, M. Mirza,
G. Wayne, D. Amos, C.-C. Hung, and M. M. Botvinick,
“Probing physics knowledge using tools from developmental
psychology,” arXiv preprint arXiv:1804.01128, 2018.

[25] P. Agrawal, A. Nair, P. Abbeel, J. Malik, and S. Levine,
“Learning to poke by poking: Experiential learning of intuitive
physics,” arXiv preprint arXiv:1606.07419, 2016.

[26] C. Finn, I. Goodfellow, and S. Levine, “Unsupervised learning
for physical interaction through video prediction,” in Advances
in Neural Information Processing Systems (NeurIPS), 2016.

[27] C. Finn and S. Levine, “Deep visual foresight for planning
robot motion,” in Proc. IEEE Int’l Conf. on Robotics and
Automation (ICRA), 2016.

[28] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilis-
tic models,” in Advances in Neural Information Processing
Systems (NeurIPS), 2020.

[29] J. Urain, N. Funk, J. Peters, and G. Chalvatzaki, “SE(3)-
DiffusionFields: Learning smooth cost functions for joint
grasp and motion optimization through diffusion,” in Proc.
IEEE Int’l Conf. on Robotics and Automation (ICRA), 2023.

[30] A. Simeonov, A. Goyal, L. Manuelli, L. Yen-Chen,
A. Sarmiento, A. Rodriguez, P. Agrawal, and D. Fox, “Shelv-
ing, stacking, hanging: Relational pose diffusion for multi-
modal rearrangement,” in Proceedings of the Conference on
Robot Learning (CoRL), 2023.

[31] T. Yoneda, T. Jiang, G. Shakhnarovich, and M. R. Walter,
“6-DoF stability field via diffusion models,” arXiv preprint
arXiv:2310.17649, 2023.

[32] W. Liu, Y. Du, T. Hermans, S. Chernova, and C. Paxton,
“StructDiffusion: Language-guided creation of physically-
valid structures using unseen objects,” in Proc. Robotics:
Science and Systems (RSS), 2023.

[33] Y. Xu, J. Mao, Y. Du, T. Lozano-Pérez, L. P. Kae-
bling, and D. Hsu, “‘Set it up!’: Functional object arrange-
ment with compositional generative models,” arXiv preprint
arXiv:2405.11928, 2024.

[34] Y. Tian, K. D. Willis, B. A. Omari, J. Luo, P. Ma, Y. Li,
F. Javid, E. Gu, J. Jacob, S. Sueda, H. Li, S. Chitta, and
W. Matusik, “ASAP: Automated sequence planning for com-
plex robotic assembly with physical feasibility,” in Proc. IEEE
Int’l Conf. on Robotics and Automation (ICRA), 2023.

[35] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Gan-
guli, “Deep unsupervised learning using nonequilibrium ther-
modynamics,” in Proc. Int’l Conf. on Machine Learning
(ICML), 2015.

[36] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is
all you need,” in Advances in Neural Information Processing
Systems (NeurIPS), 2017.

[37] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn,
X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer,
G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An image
is worth 16× 16 words: Transformers for image recognition
at scale,” in Proc. Int’l Conf. on Learning Representations
(ICLR), 2021.

	Introduction
	Related Work
	Learning Stability from Intuitive Physics
	Diffusion Models for Pose Generation
	Automated Sequential Assembly

	Method
	Diffusion Models for SE(3) Block Pose Generation
	Model Architecture
	Generating Data

	Experiments
	Evaluation in simulation
	Brute-Force Baseline
	Greedy-Random Baseline
	Transformer-Regression Baseline
	Transformer-VAE Baseline

	Predicted vs. Ground-Truth Block Lists
	Block Stacking in the Real World
	Stackstack
	Sketchstack

	Conclusion

