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Abstract

Reconstructing articulated objects prevalent in daily envi-
ronments is crucial for applications in augmented/virtual
reality and robotics. However, existing methods face scal-
ability limitations (requiring 3D supervision or costly an-
notations), robustness issues (being susceptible to local
optima), and rendering shortcomings (lacking speed or
photorealism). We introduce SPLART, a self-supervised,
category-agnostic framework that leverages 3D Gaussian
Splatting (3DGS) to reconstruct articulated objects and in-
fer kinematics from two sets of posed RGB images captured
at different articulation states, enabling real-time photo-
realistic rendering for novel viewpoints and articulations.
SPLART augments 3DGS with a differentiable mobility pa-
rameter per Gaussian, achieving refined part segmentation.
A multi-stage optimization strategy is employed to progres-
sively handle reconstruction, part segmentation, and artic-
ulation estimation, significantly enhancing robustness and
accuracy. SPLART exploits geometric self-supervision, ef-
fectively addressing challenging scenarios without requir-
ing 3D annotations or category-specific priors. Evalua-
tions on established and newly proposed benchmarks, along
with applications to real-world scenarios using a hand-
held RGB camera, demonstrate SPLART’s state-of-the-art
performance and real-world practicality. Code is publicly
available at https://github.com/ripl/splart.

1. Introduction

Articulated objects, such as drawers, doors, and scissors,
are ubiquitous in our daily lives, yet their dynamic na-
ture poses significant challenges for 3D reconstruction—
a critical task for applications in augmented/virtual real-
ity [37, 52], robotics [1, 5, 16, 24, 51, 58], and com-
puter vision [20, 46]. Existing methods for reconstruct-
ing articulated objects are hindered by several key limita-
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Figure 1. Given (top) RGB images of an object at two articulation
states, (middle) SPLART uses 3DGS to simultaneously reconstruct
its static and dynamic parts and estimate the kinematic articulation
model. SPLART is then able to (bottom) render high-fidelity 3D
reconstructions of the object along with part-level segmentations
for novel articulation states, allowing for novel view synthesis.

tions: they often require labor-intensive supervision (e.g.,
part-level segmentation or articulation annotations) [23, 29,
41, 55, 57], they depend on 3D supervision that restricts
practical use [23, 29, 34, 41, 61], they produce category-
specific models that limit scalability [29, 41, 55, 60], or
they are not capable of real-time, photorealistic render-
ing [6, 13, 23, 29, 30, 41, 55, 57, 60, 61]. To address these
challenges, we introduce SPLART, a novel self-supervised
and category-agnostic framework that leverages 3D Gaus-
sian Splatting (3DGS) [26] to reconstruct articulated ob-
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jects from minimal input—two sets of posed RGB images 2. Related Work
at distinct articulation states. PBART reconstructs object ) ) ) )
parts and infers kinematics, enabling real-time, photorealis-2-1. Data-Driven Articulation Learning

tic rendering for novel views and articulation states. Estimating the pose and joint properties of articulated

Central to $LART is the augmentation of 3DGS [26]to  objects is crucial for robot manipulation and interac-
include a differentiable mobility parameter for each Gaus- tion [10, 11, 19, 31]. Recent learning-based methods [9,
sian, which enables a more re ned segmentation of static13, 15, 22, 29, 33, 57, 65] infer articulation properties
and mobile parts through gradient-based optimization. Thisfrom point clouds via end-to-end training. For instance,
results in enhanced reconstruction quality, while preserv- Shape2Motion [57] analyzes motion parts from a single
ing the real-time, photorealistic rendering capabilities of point cloud in a supervised setting, while ANCSH [29]
3DGS—offering a speedup of more tha@0 over meth-  performs category-level pose estimation but requires class-
ods [6, 30] based on neural radiance elds [39]. speci c models. RPM-Net [63] enhances generalization

To enhance robustnesspIART employs a multi-stage ~ 2€T0SS categories for part segmentation and kinematic pre-
optimization strategy that decouples the part-level recon-diction, and DITTO [23] predicts motion and geometry
struction and articulation estimation processes. Unlike end-Tom 3D point cloud pairs without labels. However, these

to-end approaches prone to local optima [3EHL&RT rst methods depend on costly 3D supervision and annotations.

independently reconstructs each articulation state, then estii" contrast, our approach reconstructs accurate 3D geome-

mates each Gaussian's mobility parameter for part segmenlry and detailed appearance, capturing articulation without
tation, and nally re nes both the articulation and mobility 3D SUpervision or priors.

estimates jointly. This structured approach ensures stable

and accurate convergence, avoiding the stringent initializa-2.2. Representations for Object Reconstruction

tion requirements of existing methods, thereby providing a

practical solution for challenging articulated structures. ~ Early 3D object reconstruction methods predicted point
clouds, voxels, or meshes from partial observations [3, 8,

_ Building on this foundation, BLART leverages geomet- 17 Recent advances in implicit scene representations [18,
ric self-supervision to eliminate the need for manual anno- 55" 35 39 45 66] enable detailed geometry and appearance
tations or 3D supervision. By enforcing geometric con- oconstryction via differentiable rendering [12, 44, 53, 56].
sistency between reconstructions through complementarfhiie neural elds suffer from slow rendering, 3D Gaus-
loss formulations, BLART robustly estimates articulation sian Splatting (3DGS) [26] overcomes this b'y using ex-
parameters across diverse scenarios. This self-supervisegncit 3D Gaussians. We leverage 3DGS for self-supervised

strategy enhances scalability, enablingLART t0 recon- g lated object reconstruction from posed RGB images,
struct a wide range of articulated objects withoutrelying on 5cpieying fast, realistic synthesis of novel views and articu-
prior structural or categorical knowledge. lations in real time.

Extensive evaluations on both established and newly in-
troduced benchmarks demonstrateL&RT's superior ar- 2.3. Articulated Object Reconstruction
ticulation accuracy and reconstruction quality, surpassing
state-of-the-art methods without requiring 3D supervision. Recent methods leverage differentiable 3D representa-
Real-world experiments further validate its practicality, tions [26, 39, 45] to jointly reconstruct articulated ob-
showcasing successful reconstructions of diverse articulatedects and infer articulation parameters. Training-based ap-
objects using only a handheld RGB camera. proaches use synthetic 3D data to predict joint parame-
ters and segment parts [13, 14, 23, 25, 41, 43, 60]. Self-
supervised methods optimize shape, appearance, and artic-
1. An extension of 3DGS with a differentiable mobility ylation per scene without extensive training [6, 27, 30, 32,
value per Gaussian that enables precise part segmentas4, 50, 61], with some addressing multi-part objects but
tion using gradient-based optimization. requiring known part counts and single-level articulation
2. A multi-stage optimization strategy that decouples re- structures [6, 34, 61]. Other works enhance articulation
construction and articulation estimation, enhancing I0- estimation using |arge |anguage or Vision_|anguage mod-
bustness and accuracy. els [28, 36]. In contrast, our self-supervised method recon-
3. Complementary formulations of geometric self- structs two-part articulated objects from RGB images across
SUperViSion for articulation estimation, eliminating the articulation states using 3DGS [26] As the rst to app|y

In summary, this work contributes:

need for 3D supervision or laborious annotations. 3DGS to this task without 3D supervision or pre-trained
4. A challenging dataset and new metrics for comprehen-priors, it robustly handles challenging cases and achieves
sive evaluation of articulated object reconstruction. real-time performance.



(a) Stage 1: Per-state reconstruction. (b) Stage 2: Cross-static formulation (c) Stage 3: Cross-mobile formulation for
(Section 3.2.1) for mobility estimation. articulation estimation and mobility re nement.
(Section 3.2.2) (Section 3.2.3)

Figure 2. Methodology overview of SLART. It consists of three decoupled stages for the purpose of stable optimization. Stage 1
constructs a 3DGS for each state from posed RGB images using the photometric loss. Stage 2 proposes cross-static formulation for
mobility estimation. Intuitively, it combines static parts of both states and the mobile part of the desired state for the target Gaussians.
Stage 3 proposes cross-mobile formulation for articulation estimation. Intuitively, it combines static parts of both states, the mobile part of
the desired state and tiransformedmobile part of the other state together for the target Gaussians.

3. Methodology SPLART extends the 3DGS representation for articulated
objects, decoupling the goals of part-level reconstruction
and articulation estimation across three stages: (1) sepa-
Consider an arbitrary object composed of two rigid parts: a rate reconstructions for each articulation state (Sec. 3.2.1),
staticparentpart, and ahild part that can move relative to  (2) mobility estimation using the cross-static formulation
its parent through either a revolute or prismatic articulation. (Sec. 3.2.2), and (3) articulation estimation and mobility re-
Our objective is twofold: (1) to reconstruct the articulated nement using the cross-mobile formulation (Sec. 3.2.3).
object at the part level; and (2) to estimate its articulated To facilitate the application of 8. ART to real-world ob-
motion. Assuming a known articulation type (i.e., either jects, we leverage modern structure-from-motion and im-
revolute or prismatic), the input to our method consists of age segmentation techniques, developing a framework that
two sets of posed RGB images (i.e., images with known enables general users to reconstruct articulated objects in
camera intrinsics and extrinsics), each capturing the articu-their surroundings using only images captured by a hand-
lated object at one end state of the motion. held camera device (Sec. 3.3).

Formally, letl denote the articulation state label, where
| = 0 andl = 1 correspond to the two end states of the 3.2. Decoupled Multi-Stage Optimization

observed articulation. For reconstructio® L3 RT uses ob- . . . . .
. _ T ) : Jointly performing part-level reconstruction and articulation

servationsO, = f(I];P';K{)gZ;; | 2 £0;1g, wherel| oo . S ;
. . . . . estimation on an articulated object is prone to local min-
is thei-th observed RGB image of the articulated object at . - :

i i . I -~ "7 ima [6, 30], making it preferable to strategically decouple
statel, P/ andK| denote its camera extrinsics and intrinsics ) .

. the problem into multiple stages.
respectively, antN, represents the number of data samples
for statel. Note thatP| is speci ed_ in a common v_vorld 3.2.1. Separate per-state reconstruction
space for both states, while the articulated motion involves
only one moving part w.r.t. the world spacer I ART mod-
els a revolute articulation with its rotation axigkak = 1) ,
pivot p, and rotation angle, such that a poink (in the
world space) on the mobile part at sthte 0 will move to

3.1. Overview

In Stage 1, two 3DGS models are separately optimized
following the standard procedure, one for each end state
of the articulation. Speci cally, apart from the attributes
from original 3DGS, each Gaussian is additionally initial-
ized with a persistent binary state labelequally drawn
Tox = Ra; (X p)+ p (1) from f0; 1g. We denote the set of Gaussians representing
statel asG®’, whereref emphasizes tha® is the refer-
ence reconstruction unaffected by the other state. Given a
data sample observed at sthteve have the optimization:

at statel = 1, whereR,. is the rotation induced by the
axis-angle notation. A prismatic articulation is instead mod-
eled by its translation axis (kak = 1) and distancel. The
goal is to reconstruct the articulated object at the part level

. efi.piy.
using a chosen representation while estimating the articu- ”%,'Q (D (2a)
lated motion Ty, ensuring that the renderings at each artic- frefi _ rof. i u v L
ulation state align consistently with the observations. = R(GTPIKY); 1210 1g; (2b)



whereR is the 3DGS rendering function, and represents  overlapped at its mean position. The mobilities are then op-
the photometric loss. For simplicity, the view indexand timized by encouraging the geometric consistency formu-

camera parameteR ; K| will be omitted from now on. lated as follows:
3.2.2. Cross-static formulation for mobility estimation min CDg+CD°+ $°"kMKk ; (6a)
The focus of Stage 2 is mobility estimation for each Gaus- CDES = Chamfer( qtgt:cs; q’ef); (6b)

sian. To keep3"®f dedicated to the single-state reconstruc-
tion, we rst duplicate G* as G* for both states (i.e., ~where Chamfdr) denotes the weighted Chamfer distance,
| 2 f0; 1g), which is intended as the target representation and & kMK is the regularization term that encourages
that will ful Il the goals of part-level reconstruction and ar- smaller mobilities. Note howM affects the weighted
ticulation estimation. By designz'9 shares neither data Chamfer distance by modifying the opacities, and Mat
storage nor gradient ow witl&'®' after its creation. 1 is a trivial solution without the regularization. With-
For each Gaussian 69, we further extend its set of Out photometric supervision, the mobilities obtained from
attributes with a mobility valuen 2 [0; 1], initialized with ~ EQn. 6a are generally noisy. However, being relatively fast
0:5. By design,m enables the break-down of a Gaussian (taking only tens of seconds), they still serve as a good ini-
to its static and mobile components, where each componentialization for the next sub-stage.
inherits all the original Gaussian attributes except for the Stage 2(b): Joint mobility and Gaussian optimization
opacity . The static component has its opacity modi ed Via cross-static rendering. To more accurately estimate
to (L m), and the mobile component to m. For th_e mobilities whil_e jointly re n_ing the full Gaussian at-
simplicity, lettingM be the set of mobilities fo6, we use tributes, cross-static rendering is performed as follows:

the element-wise produ@ (1 M ) to denote the static min LSS 1)+ BV kg (7a)
component of3, andG M for the mobile component. GEEM 1 _
To estimate the mobilitieM , we employ the intuition = R(G*); (7b)

that the static components from both states should consti- h phota Mtk is th bilit larization t

tute the static part of the articulated object. Formally, we Where m "1 1K 1S the mobiiity regularization term

introduce thecross-static (cs) formulatigrwhere the static similar to that in Eqn. 62.

part of the articulated object is jointly represented as 3.2.3. Cross-mobile formulation for articulation estima-
tion and mobility re nement

G=G" @M )G @M 1) (B  Thefocus of Stage 3 is to estimate the articulation parame-
ters shared by the mobile components of all Gaussians. To
this end, we employ the intuition that the mobile compo-
nents from the two end states are related through the articu-
lated motion. Formally, we introduce tleeoss-mobile (cm)
formulation where the mobile part of the articulated object
at statd is jointly represented as

where denotes concatenation. For sthtéhe target rep-
resentation thus becomes

G‘lgt;cs: Gs G ltgt M I (4)

With this formulation, Stage 2 is further divided into two
sub-stages as below. G"=G" M, Ty (GF M) 8

Stage 2(a): Coarse mobility estimation via cross-static  where!T, |(G) denotes the transformation of Gaussiéhs
geometric consistency. To measure the geometric dis- according to the articulated motion from state | tol. For
tance between two Gaussian sets, we design a weightedtatel, the target representation thus becomes

version of the Chamfer distance. Speci cally, &t = sgtem "
f(xiiwe gy andY = f(y;;wy,)gL; be two sets of G =G G ©)

point-weight pairs, the weighted Chamfer distance is then: where G5 is de ned in Eqn. 3. With this formulation,

, Stage 3 is further divided into three sub-stages as below.
Chamfer(X;Y ) = Wy, min  kxi yjk Stage 3(a): Coarse articulation estimation via geomet-

(o )2x  O)2Y ric consistency. Similar to Eqn. 6a, weighted Chamfer
. 5. distance is used for computing the cross-mobile geometric
+ Wy, min  kx; y;jk% (5) . . L S
" (%1, )2X consistency, which can be optimized over both mobilities
(vi wy; )2Y and articulation parameters as follows:
wherew,, = wx,=" (i wxy2x Wx; @ndwy, are normalized {4”'? CDg§"+CD ™ (10a)
weights. For each Gaussian, we use its mobility-modi ed om _' tgtom, ~refy.
opacity °as the weight, essentially treating it adpoints CD™ = Chamfer(G™™; G): (10b)



(a) Failure with cross-mobile geo-(b) Success with mobile-only geo-
metric consistency. metric consistency.

(a) Failure with mobile-only geo- (b) Success with cross-mobile geo-
Figure 3. 103549-Toaster has a at slider as its mobile part, sim- metric consistency. metric consistency.
ilar in geometric curvature to the static component. This similar- )
ity makes the nearest-neighbor data association error-prone wherrigure 4. 101713-Pen has both ends of a pen as the mobile part,
computing the Chamfer distance for cross-mobile geometric con- With only one end visible from any given observation. Thus, the
sistency. On the other hand, mobile-only geometric consistency "eéconstructed mobile components from the two states essentially

focuses only on the mobile parts, successfully handling the case. epresent distinct parts, violating the intuition for mobile-only ge-
ometric consistency. On the other hand, cross-mobile geometric

consistency considers the joint representation from both states as

. . L . . whol full imating the articulation.
However, we notice that this formulation is still suscepti- awhole, successfully estimating the articulatio

ble to local minima if the mobile part is too geometrically

in_signi cant. We quz_alitatively show one such _failure in Stage 3(c): Mobility correction via cross-mobile geomet-
Fig. 3a. To remedy this, we further propose mobile-only ge- e consistency. Stage 3(b) solely relies on photometric

ometric consistency, which concerns only the mobile com- supervision, which is limited to the training views. On rare

ponents of both states as follows: occasions, a Gaussian may be mistakenly estimated as mo-
bile if the articulated motion moves it out of sight from most
views, effectively losing the supervision. On the other hand,
geometric consistency is not affected by sight limitations,

While successfully addressing these scenarios, mobile-which we leverage for mobility correction as follows:
only geometric consistency still falls short in other circum-

stances, especially when the mobile components in the two min CDg"+ CD §™ (15)
states exhibit large discrepancies. We qualitatively show M

one such failure in Fig. 4a. To take advantage of both for-

mulations and to facilitate robustness in the inherently non- 3.3. Real-World Application

convex optimization of articulation parameters, we propose
the following practical scheme:

1. With K™ randomized tries: articulation estimation via

CD™ = Chamfer(G® M ;'T; ((G¥, M1 1)): (11)

For an articulated object to be reconstructed in the real
world, we rst collect two sets of RGB images, one
for each articulation state, by imaging the object from
a surrounding hemisphere. We then preprocess the data
to determine the posed images that serve as the input
to SPLART. This involves using SAM 2 [47] to per-

2. WithK “™randomized tries, plus another initialized with  form foreground-background segmentation, which also re-

T" =arg mTin cbD™: (12)

T™: articulation estimation via moves dynamic contents of the scene. We then perform
structure-from-motion (SfM) to determine camera poses us-
T = arg mTin CD{"+CD (™ (13) ing COLMAP [49] with SuperPoint [7] descriptors and Su-

perGlue [48] matching on the segmented backgrounds from
both sets of images to construct a joint coordinate frame for
the object in both states. Once we obtain the joint coordi-
nate frame and the foreground target object is localized, we
Stage 3(b): Joint articulation, mobility, and Gaussian ~ r'un SPLART to reconstruct the articulated objects.
optimization via cross-mobile rendering. Like in Stage
2(b), we perform a full joint optimization over articulation 4. Experiments
parameters, mobilities, and Gaussians utilizing photometric

4.1. Datasets

supervision via cross-mobile rendering as follows:
PARIS PartNet-Mobility Subset. PartNet-Mobility is a

3. Final run initialized withT °™: joint articulation estima-
tion and mobility re nement via Egn. 10a.

minI L(E™); (14a) large-scale dataset that provides simulatable 3D object
CEM LT models with part-level mobility [2, 40, 62], from which
(tm= R(G%™); | 21 0;1g: (14b)  PARIS [30] selects 10 instances for experiments, 8 being



Succes$ err, 2? er, ¢ er, 2 e 2 CDs 2 CDnm 2 cb, 2
Type Method “cite ~ (102DEG)Y (103 (102DEG) (103 ° (103’ (103’ (103’
PARIS 40:0% 12190 6845 527 455 12780 5512 N/A 348 039 6844 1303 1311 1:16
Revolute DTAY 98:8% 1232 416 186 1:69 1941 1628 N/A 220 0:49 127 1:87 173 003
SPLART  100:0% 370 0:38 Q40 0:07 485 0:33 N/A 408 0:32 106 078 359 0:21
PARIS 50:0% 2797 1309 N/A N/A 428 302 921 1:94 15178 3500 799 0:49
Prismatic DTAY 100:0% 1626 354 N/A N/A 1:15 014 269 004 1574 028 222 0:03
SPLART  95.0% 236 0:44 N/A N/A 0:33 004 602 0:20 1677 114 369 014
PARIS 42:0% 10312 57:38 527 455 12780 5512 428 302 463 070 8511 17:42 1209 1:.03
Overall  DTAY 99:0% 1311 404 186 1:69 1941 1628 115 014 230  0:40 416 155 183 0:03
SPLART  99:0% 344 039 Q40 0:07 485 0:33 033 004 447  0:30 420 0:85 361 0:19
Table 1. PARIS-PMS Articulation and Mesh Reconstruction Met¥iESTA requires ground-truth depth.
Type Method PSNR Depth MAE# mloU" State O Static Part Mobile Part State 1
PARIS 3221 0093 Q955
Revolute DTAY N/A 0:031 Q941
SPLART 4353 0039 Q974
PARIS 3375 0108 Q902
Prismatic DTAY N/A 0:066 Q844
SPLART 4438 0025 Q890
PARIS 3252 0096 Q942
Overall DTAY N/A 0:038 Q922
SPLART 4370 0036 Q957

Table 2. PARIS-PMS Novel View Synthesis Metrics. Results cor-
respond to average over successful runs (see Tab. 1 for success
rates)Y DTA requires ground-truth depth.

Table 3. Real-World Articulated Object Reconstructions
revolute and 2 being prismatic. We refer to this dataset as
PARIS-PMS. For each articulation state, PARIS provides .
Our experiments reveal thaPSART-PMS poses a greater

100 calibrated object-centric views for training and 50 for hall han PARIS-PMS—the | bei |
testing, sampled from the upper hemisphere. However, thechallenge than ) —the latter being almost per-

released dataset lacks ground-truth depth and part segmerf—eCtIy solved by our method.

tation maps. To address this, we follow their data gener- Real-World Dataset. To show the ef cacy of 8LART on

ation procedure and augment PARIS-PMS with the neces-real-world usage, we collect a dataset consisting of 7 real-
sary ground-truth data for depth and segmentation evaluaworld objects with 9 articulations in total, including com-
tions. Still, no test views for intermediate articulation states mon objects like monitor, cabinet, glasses, etc. All images
are provided, limiting quantitative evaluation of novel artic- are captured by a hand-held phone camera. Camera param-
ulation synthesis. eters are calibrated following strategies detailed in Sec. 3.3.

SPLART PartNet-Mobility Subset. We curate an ad- We qualitatively evaluate 8 ART on this dataset.
ditional articulated object dataset from PartNet-Mobility,
dubbed $LART-PMS, to enable a more comprehensive
evaluation, including the quantitative assessment of novelArticulation Estimation. We evaluate the accuracy of ar-
articulation synthesis. Our dataset comprises 22 object in-ticulation estimation depending on its type.

stances from categories not included in PARIS-PMS, with ¢ A revolute articulation describes a rotation around some
12 revolute and 10 prismatic objects. For the test split, line in 3D space, parameterized by the pivot pgnbn

we also generate ground-truth depth and part segmenta- the line, the line's directional axia, and the angle of ro-
tion maps to facilitate relevant evaluations. Crucially, while  tation . We report the angular error grfin - 10 2 DEG)
PARIS-PMS restricts articulation states to binary values, between the predicted and ground-truth axes, the geodesic
SPLART-PMS uniformly samples states from 0:1; 1:1], distance efr(in 10 2 DEG) between the predicted and
demanding accurate estimation of articulation, part segmen- ground-truth rotations induced by the axis-angte |
tation, and object reconstruction for correct view synthesis. pair, and the pivot point error grr Since the pivot can

4.2. Evaluation Metrics
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