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Abstract

Reconstructing articulated objects prevalent in daily envi-
ronments is crucial for applications in augmented/virtual
reality and robotics. However, existing methods face scal-
ability limitations (requiring 3D supervision or costly an-
notations), robustness issues (being susceptible to local
optima), and rendering shortcomings (lacking speed or
photorealism). We introduce SPLART, a self-supervised,
category-agnostic framework that leverages 3D Gaussian
Splatting (3DGS) to reconstruct articulated objects and in-
fer kinematics from two sets of posed RGB images captured
at different articulation states, enabling real-time photo-
realistic rendering for novel viewpoints and articulations.
SPLART augments 3DGS with a differentiable mobility pa-
rameter per Gaussian, achieving refined part segmentation.
A multi-stage optimization strategy is employed to progres-
sively handle reconstruction, part segmentation, and artic-
ulation estimation, significantly enhancing robustness and
accuracy. SPLART exploits geometric self-supervision, ef-
fectively addressing challenging scenarios without requir-
ing 3D annotations or category-specific priors. Evalua-
tions on established and newly proposed benchmarks, along
with applications to real-world scenarios using a hand-
held RGB camera, demonstrate SPLART’s state-of-the-art
performance and real-world practicality. Code is publicly
available at https://github.com/ripl/splart.

1. Introduction

Articulated objects, such as drawers, doors, and scissors,
are ubiquitous in our daily lives, yet their dynamic na-
ture poses significant challenges for 3D reconstruction—
a critical task for applications in augmented/virtual real-
ity [37, 52], robotics [1, 5, 16, 24, 51, 58], and com-
puter vision [20, 46]. Existing methods for reconstruct-
ing articulated objects are hindered by several key limita-

Figure 1. Given (top) RGB images of an object at two articulation
states, (middle) SPLART uses 3DGS to simultaneously reconstruct
its static and dynamic parts and estimate the kinematic articulation
model. SPLART is then able to (bottom) render high-fidelity 3D
reconstructions of the object along with part-level segmentations
for novel articulation states, allowing for novel view synthesis.

tions: they often require labor-intensive supervision (e.g.,
part-level segmentation or articulation annotations) [23, 29,
41, 55, 57], they depend on 3D supervision that restricts
practical use [23, 29, 34, 41, 61], they produce category-
specific models that limit scalability [29, 41, 55, 60], or
they are not capable of real-time, photorealistic render-
ing [6, 13, 23, 29, 30, 41, 55, 57, 60, 61]. To address these
challenges, we introduce SPLART, a novel self-supervised
and category-agnostic framework that leverages 3D Gaus-
sian Splatting (3DGS) [26] to reconstruct articulated ob-
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jects from minimal input—two sets of posed RGB images
at distinct articulation states. SPLART reconstructs object
parts and infers kinematics, enabling real-time, photorealis-
tic rendering for novel views and articulation states.

Central to SPLART is the augmentation of 3DGS [26] to
include a differentiable mobility parameter for each Gaus-
sian, which enables a more re�ned segmentation of static
and mobile parts through gradient-based optimization. This
results in enhanced reconstruction quality, while preserv-
ing the real-time, photorealistic rendering capabilities of
3DGS—offering a speedup of more than100� over meth-
ods [6, 30] based on neural radiance �elds [39].

To enhance robustness, SPLART employs a multi-stage
optimization strategy that decouples the part-level recon-
struction and articulation estimation processes. Unlike end-
to-end approaches prone to local optima [30], SPLART �rst
independently reconstructs each articulation state, then esti-
mates each Gaussian's mobility parameter for part segmen-
tation, and �nally re�nes both the articulation and mobility
estimates jointly. This structured approach ensures stable
and accurate convergence, avoiding the stringent initializa-
tion requirements of existing methods, thereby providing a
practical solution for challenging articulated structures.

Building on this foundation, SPLART leverages geomet-
ric self-supervision to eliminate the need for manual anno-
tations or 3D supervision. By enforcing geometric con-
sistency between reconstructions through complementary
loss formulations, SPLART robustly estimates articulation
parameters across diverse scenarios. This self-supervised
strategy enhances scalability, enabling SPLART to recon-
struct a wide range of articulated objects without relying on
prior structural or categorical knowledge.

Extensive evaluations on both established and newly in-
troduced benchmarks demonstrate SPLART's superior ar-
ticulation accuracy and reconstruction quality, surpassing
state-of-the-art methods without requiring 3D supervision.
Real-world experiments further validate its practicality,
showcasing successful reconstructions of diverse articulated
objects using only a handheld RGB camera.

In summary, this work contributes:

1. An extension of 3DGS with a differentiable mobility
value per Gaussian that enables precise part segmenta-
tion using gradient-based optimization.

2. A multi-stage optimization strategy that decouples re-
construction and articulation estimation, enhancing ro-
bustness and accuracy.

3. Complementary formulations of geometric self-
supervision for articulation estimation, eliminating the
need for 3D supervision or laborious annotations.

4. A challenging dataset and new metrics for comprehen-
sive evaluation of articulated object reconstruction.

2. Related Work

2.1. Data­Driven Articulation Learning

Estimating the pose and joint properties of articulated
objects is crucial for robot manipulation and interac-
tion [10, 11, 19, 31]. Recent learning-based methods [9,
13, 15, 22, 29, 33, 57, 65] infer articulation properties
from point clouds via end-to-end training. For instance,
Shape2Motion [57] analyzes motion parts from a single
point cloud in a supervised setting, while ANCSH [29]
performs category-level pose estimation but requires class-
speci�c models. RPM-Net [63] enhances generalization
across categories for part segmentation and kinematic pre-
diction, and DITTO [23] predicts motion and geometry
from 3D point cloud pairs without labels. However, these
methods depend on costly 3D supervision and annotations.
In contrast, our approach reconstructs accurate 3D geome-
try and detailed appearance, capturing articulation without
3D supervision or priors.

2.2. Representations for Object Reconstruction

Early 3D object reconstruction methods predicted point
clouds, voxels, or meshes from partial observations [3, 8,
17]. Recent advances in implicit scene representations [18,
26, 38, 39, 45, 66] enable detailed geometry and appearance
reconstruction via differentiable rendering [12, 44, 53, 56].
While neural �elds suffer from slow rendering, 3D Gaus-
sian Splatting (3DGS) [26] overcomes this by using ex-
plicit 3D Gaussians. We leverage 3DGS for self-supervised
articulated object reconstruction from posed RGB images,
achieving fast, realistic synthesis of novel views and articu-
lations in real time.

2.3. Articulated Object Reconstruction

Recent methods leverage differentiable 3D representa-
tions [26, 39, 45] to jointly reconstruct articulated ob-
jects and infer articulation parameters. Training-based ap-
proaches use synthetic 3D data to predict joint parame-
ters and segment parts [13, 14, 23, 25, 41, 43, 60]. Self-
supervised methods optimize shape, appearance, and artic-
ulation per scene without extensive training [6, 27, 30, 32,
34, 50, 61], with some addressing multi-part objects but
requiring known part counts and single-level articulation
structures [6, 34, 61]. Other works enhance articulation
estimation using large language or vision-language mod-
els [28, 36]. In contrast, our self-supervised method recon-
structs two-part articulated objects from RGB images across
articulation states using 3DGS [26]. As the �rst to apply
3DGS to this task without 3D supervision or pre-trained
priors, it robustly handles challenging cases and achieves
real-time performance.
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(a)Stage 1: Per-state reconstruction.
(Section 3.2.1)

(b) Stage 2: Cross-static formulation
for mobility estimation.

(Section 3.2.2)

(c) Stage 3: Cross-mobile formulation for
articulation estimation and mobility re�nement.

(Section 3.2.3)

Figure 2. Methodology overview of SPLART. It consists of three decoupled stages for the purpose of stable optimization. Stage 1
constructs a 3DGS for each state from posed RGB images using the photometric loss. Stage 2 proposes cross-static formulation for
mobility estimation. Intuitively, it combines static parts of both states and the mobile part of the desired state for the target Gaussians.
Stage 3 proposes cross-mobile formulation for articulation estimation. Intuitively, it combines static parts of both states, the mobile part of
the desired state and thetransformedmobile part of the other state together for the target Gaussians.

3. Methodology

3.1. Overview

Consider an arbitrary object composed of two rigid parts: a
staticparentpart, and achild part that can move relative to
its parent through either a revolute or prismatic articulation.
Our objective is twofold: (1) to reconstruct the articulated
object at the part level; and (2) to estimate its articulated
motion. Assuming a known articulation type (i.e., either
revolute or prismatic), the input to our method consists of
two sets of posed RGB images (i.e., images with known
camera intrinsics and extrinsics), each capturing the articu-
lated object at one end state of the motion.

Formally, letl denote the articulation state label, where
l = 0 and l = 1 correspond to the two end states of the
observed articulation. For reconstruction, SPLART uses ob-
servationsOl = f (I i

l ; P i
l ; K i

l )gN l
i =1 ; l 2 f 0; 1g, whereI i

l
is thei -th observed RGB image of the articulated object at
statel , P i

l andK i
l denote its camera extrinsics and intrinsics

respectively, andN l represents the number of data samples
for statel . Note thatP i

l is speci�ed in a common world
space for both states, while the articulated motion involves
only one moving part w.r.t. the world space. SPLART mod-
els a revolute articulation with its rotation axisa (kak = 1) ,
pivot p, and rotation angle� , such that a pointx (in the
world space) on the mobile part at statel = 0 will move to

1T0x = Ra;� (x � p) + p (1)

at statel = 1 , whereRa;� is the rotation induced by the
axis-angle notation. A prismatic articulation is instead mod-
eled by its translation axisa (kak = 1) and distanced. The
goal is to reconstruct the articulated object at the part level
using a chosen representation while estimating the articu-
lated motion1T0, ensuring that the renderings at each artic-
ulation state align consistently with the observations.

SPLART extends the 3DGS representation for articulated
objects, decoupling the goals of part-level reconstruction
and articulation estimation across three stages: (1) sepa-
rate reconstructions for each articulation state (Sec. 3.2.1),
(2) mobility estimation using the cross-static formulation
(Sec. 3.2.2), and (3) articulation estimation and mobility re-
�nement using the cross-mobile formulation (Sec. 3.2.3).
To facilitate the application of SPLART to real-world ob-
jects, we leverage modern structure-from-motion and im-
age segmentation techniques, developing a framework that
enables general users to reconstruct articulated objects in
their surroundings using only images captured by a hand-
held camera device (Sec. 3.3).

3.2. Decoupled Multi­Stage Optimization

Jointly performing part-level reconstruction and articulation
estimation on an articulated object is prone to local min-
ima [6, 30], making it preferable to strategically decouple
the problem into multiple stages.

3.2.1. Separate per­state reconstruction

In Stage 1, two 3DGS models are separately optimized
following the standard procedure, one for each end state
of the articulation. Speci�cally, apart from the attributes
from original 3DGS, each Gaussian is additionally initial-
ized with a persistent binary state labell , equally drawn
from f 0; 1g. We denote the set of Gaussians representing
statel asGref

l , whereref emphasizes thatGref is the refer-
ence reconstruction unaffected by the other state. Given a
data sample observed at statel , we have the optimization:

min
Gref

l

� I (Î ref;i
l ; I i

l ); (2a)

Î ref;i
l = R(Gref

l ; P i
l ; K i

l ); l 2 f 0; 1g; (2b)
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whereR is the 3DGS rendering function, and� I represents
the photometric loss. For simplicity, the view indexi and
camera parametersP i

l ; K i
l will be omitted from now on.

3.2.2. Cross­static formulation for mobility estimation

The focus of Stage 2 is mobility estimation for each Gaus-
sian. To keepGref dedicated to the single-state reconstruc-
tion, we �rst duplicateGref

l as Gtgt
l for both states (i.e.,

l 2 f 0; 1g), which is intended as the target representation
that will ful�ll the goals of part-level reconstruction and ar-
ticulation estimation. By design,Gtgt shares neither data
storage nor gradient �ow withGref after its creation.

For each Gaussian inGtgt, we further extend its set of
attributes with a mobility valuem 2 [0; 1], initialized with
0:5. By design,m enables the break-down of a Gaussian
to its static and mobile components, where each component
inherits all the original Gaussian attributes except for the
opacity � . The static component has its opacity modi�ed
to � � (1 � m), and the mobile component to� � m. For
simplicity, lettingM be the set of mobilities forG, we use
the element-wise productG �(1 � M ) to denote the static
component ofG, andG � M for the mobile component.

To estimate the mobilitiesM , we employ the intuition
that the static components from both states should consti-
tute the static part of the articulated object. Formally, we
introduce thecross-static (cs) formulation, where the static
part of the articulated object is jointly represented as

Gs = Gtgt
l � (1 � M l ) � G tgt

1� l � (1 � M 1� l ); (3)

where� denotes concatenation. For statel , the target rep-
resentation thus becomes

Gtgt;cs
l = Gs � G tgt

l � M l : (4)

With this formulation, Stage 2 is further divided into two
sub-stages as below.

Stage 2(a): Coarse mobility estimation via cross-static
geometric consistency. To measure the geometric dis-
tance between two Gaussian sets, we design a weighted
version of the Chamfer distance. Speci�cally, letX =
f (x i ; wx i )g

M
i =1 and Y = f (yj ; wy j )gN

j =1 be two sets of
point-weight pairs, the weighted Chamfer distance is then:

Chamfer(X; Y ) =
X

(x i ;w x i )2 X

~wx i min
(y j ;w y j )2 Y

kx i � yj k2

+
X

(y j ;w y j )2 Y

~wy j min
(x i ;w x i )2 X

kx i � yj k2; (5)

where ~wx i = wx i =P
( x i ;w x i ) 2 X wx i and ~wy j are normalized

weights. For each Gaussian, we use its mobility-modi�ed
opacity� 0 as the weight, essentially treating it as� 0 points

overlapped at its mean position. The mobilities are then op-
timized by encouraging the geometric consistency formu-
lated as follows:

min
M

CDcs
0 + CD cs

1 + � geom
m kMk ; (6a)

CDcs
l = Chamfer( Gtgt;cs

l ; Gref
l ); (6b)

where Chamfer(�) denotes the weighted Chamfer distance,
and � geom

m kMk is the regularization term that encourages
smaller mobilities. Note howM affects the weighted
Chamfer distance by modifying the opacities, and thatM =
1 is a trivial solution without the regularization. With-
out photometric supervision, the mobilities obtained from
Eqn. 6a are generally noisy. However, being relatively fast
(taking only tens of seconds), they still serve as a good ini-
tialization for the next sub-stage.
Stage 2(b): Joint mobility and Gaussian optimization
via cross-static rendering. To more accurately estimate
the mobilities while jointly re�ning the full Gaussian at-
tributes, cross-static rendering is performed as follows:

min
Gtgt;M 1 � l

� I (Î cs
l ; I l ) + � photo

m kM 1� l k; (7a)

Î cs
l = R(Gtgt;cs

l ); (7b)

where � photo
m kM 1� l k is the mobility regularization term

similar to that in Eqn. 6a.

3.2.3. Cross­mobile formulation for articulation estima­
tion and mobility re�nement

The focus of Stage 3 is to estimate the articulation parame-
ters shared by the mobile components of all Gaussians. To
this end, we employ the intuition that the mobile compo-
nents from the two end states are related through the articu-
lated motion. Formally, we introduce thecross-mobile (cm)
formulation, where the mobile part of the articulated object
at statel is jointly represented as

Gm
l = Gtgt

l � M l � l T1� l (G
tgt
1� l � M 1� l ); (8)

wherel T1� l (G) denotes the transformation of GaussiansG
according to the articulated motion from state1� l to l . For
statel , the target representation thus becomes

Gtgt;cm
l = Gs � G m

l ; (9)

where Gs is de�ned in Eqn. 3. With this formulation,
Stage 3 is further divided into three sub-stages as below.
Stage 3(a): Coarse articulation estimation via geomet-
ric consistency. Similar to Eqn. 6a, weighted Chamfer
distance is used for computing the cross-mobile geometric
consistency, which can be optimized over both mobilities
and articulation parameters as follows:

min
M ;T

CDcm
0 + CD cm

1 ; (10a)

CDcm
l = Chamfer( Gtgt;cm

l ; Gref
l ): (10b)
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(a) Failure with cross-mobile geo-
metric consistency.

(b) Success with mobile-only geo-
metric consistency.

Figure 3. 103549-Toaster has a �at slider as its mobile part, sim-
ilar in geometric curvature to the static component. This similar-
ity makes the nearest-neighbor data association error-prone when
computing the Chamfer distance for cross-mobile geometric con-
sistency. On the other hand, mobile-only geometric consistency
focuses only on the mobile parts, successfully handling the case.

However, we notice that this formulation is still suscepti-
ble to local minima if the mobile part is too geometrically
insigni�cant. We qualitatively show one such failure in
Fig. 3a. To remedy this, we further propose mobile-only ge-
ometric consistency, which concerns only the mobile com-
ponents of both states as follows:

CDm = Chamfer( Gtgt
l � M l ; l T1� l (G

tgt
1� l � M 1� l )) : (11)

While successfully addressing these scenarios, mobile-
only geometric consistency still falls short in other circum-
stances, especially when the mobile components in the two
states exhibit large discrepancies. We qualitatively show
one such failure in Fig. 4a. To take advantage of both for-
mulations and to facilitate robustness in the inherently non-
convex optimization of articulation parameters, we propose
the following practical scheme:
1. With K m randomized tries: articulation estimation via

Tm = arg min
T

CDm: (12)

2. WithK cm randomized tries, plus another initialized with
Tm: articulation estimation via

T cm = arg min
T

CDcm
0 + CD cm

1 : (13)

3. Final run initialized withT cm: joint articulation estima-
tion and mobility re�nement via Eqn. 10a.

Stage 3(b): Joint articulation, mobility, and Gaussian
optimization via cross-mobile rendering. Like in Stage
2(b), we perform a full joint optimization over articulation
parameters, mobilities, and Gaussians utilizing photometric
supervision via cross-mobile rendering as follows:

min
Gtgt;M 1 � l ; l T1 � l

� I (Î cm
l ; I l ); (14a)

Î cm
l = R(Gtgt;cm

l ); l 2 f 0; 1g: (14b)

(a) Failure with mobile-only geo-
metric consistency.

(b) Success with cross-mobile geo-
metric consistency.

Figure 4. 101713-Pen has both ends of a pen as the mobile part,
with only one end visible from any given observation. Thus, the
reconstructed mobile components from the two states essentially
represent distinct parts, violating the intuition for mobile-only ge-
ometric consistency. On the other hand, cross-mobile geometric
consistency considers the joint representation from both states as
a whole, successfully estimating the articulation.

Stage 3(c): Mobility correction via cross-mobile geomet-
ric consistency. Stage 3(b) solely relies on photometric
supervision, which is limited to the training views. On rare
occasions, a Gaussian may be mistakenly estimated as mo-
bile if the articulated motion moves it out of sight from most
views, effectively losing the supervision. On the other hand,
geometric consistency is not affected by sight limitations,
which we leverage for mobility correction as follows:

min
M

CDcm
0 + CD cm

1 : (15)

3.3. Real­World Application

For an articulated object to be reconstructed in the real
world, we �rst collect two sets of RGB images, one
for each articulation state, by imaging the object from
a surrounding hemisphere. We then preprocess the data
to determine the posed images that serve as the input
to SPLART. This involves using SAM 2 [47] to per-
form foreground-background segmentation, which also re-
moves dynamic contents of the scene. We then perform
structure-from-motion (SfM) to determine camera poses us-
ing COLMAP [49] with SuperPoint [7] descriptors and Su-
perGlue [48] matching on the segmented backgrounds from
both sets of images to construct a joint coordinate frame for
the object in both states. Once we obtain the joint coordi-
nate frame and the foreground target object is localized, we
run SPLART to reconstruct the articulated objects.

4. Experiments

4.1. Datasets

PARIS PartNet-Mobility Subset. PartNet-Mobility is a
large-scale dataset that provides simulatable 3D object
models with part-level mobility [2, 40, 62], from which
PARIS [30] selects 10 instances for experiments, 8 being
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Type Method
Success

Rate
x
? erra

(� 10� 2 DEG)
?
y errp

(� 10� 3)
?
y errr

(� 10� 2 DEG)
?
y errt

(� 10� 3)
?
y CDs

(� 10� 3)
?
y CDm

(� 10� 3)
?
y CDw

(� 10� 3)
?
y

Revolute
PARIS 40:0% 121:90� 68:45 5:27� 4:55 127:80� 55:12 N/A 3:48� 0:39 68:44� 13:03 13:11� 1:16
DTAy 98:8% 12:32� 4:16 1:86� 1:69 19:41� 16:28 N/A 2:20� 0:49 1:27� 1:87 1:73� 0:03
SPLART 100:0% 3:70� 0:38 0:40� 0:07 4:85� 0:33 N/A 4:08� 0:32 1:06� 0:78 3:59� 0:21

Prismatic
PARIS 50:0% 27:97� 13:09 N/A N/A 4:28 � 3:02 9:21� 1:94 151:78� 35:00 7:99� 0:49
DTAy 100:0% 16:26� 3:54 N/A N/A 1:15 � 0:14 2:69� 0:04 15:74� 0:28 2:22� 0:03
SPLART 95:0% 2:36� 0:44 N/A N/A 0:33 � 0:04 6:02� 0:20 16:77� 1:14 3:69� 0:14

Overall
PARIS 42:0% 103:12� 57:38 5:27� 4:55 127:80� 55:12 4:28 � 3:02 4:63� 0:70 85:11� 17:42 12:09� 1:03
DTAy 99:0% 13:11� 4:04 1:86� 1:69 19:41� 16:28 1:15 � 0:14 2:30� 0:40 4:16� 1:55 1:83� 0:03
SPLART 99:0% 3:44� 0:39 0:40� 0:07 4:85� 0:33 0:33 � 0:04 4:47� 0:30 4:20� 0:85 3:61� 0:19

Table 1. PARIS-PMS Articulation and Mesh Reconstruction Metrics.yDTA requires ground-truth depth.

Type Method PSNR" Depth MAE# mIoU "

Revolute
PARIS 32:21 0:093 0:955
DTAy N/A 0:031 0:941
SPLART 43:53 0:039 0:974

Prismatic
PARIS 33:75 0:108 0:902
DTAy N/A 0:066 0:844
SPLART 44:38 0:025 0:890

Overall
PARIS 32:52 0:096 0:942
DTAy N/A 0:038 0:922
SPLART 43:70 0:036 0:957

Table 2. PARIS-PMS Novel View Synthesis Metrics. Results cor-
respond to average over successful runs (see Tab. 1 for success
rates).yDTA requires ground-truth depth.

revolute and 2 being prismatic. We refer to this dataset as
PARIS-PMS. For each articulation state, PARIS provides
100 calibrated object-centric views for training and 50 for
testing, sampled from the upper hemisphere. However, the
released dataset lacks ground-truth depth and part segmen-
tation maps. To address this, we follow their data gener-
ation procedure and augment PARIS-PMS with the neces-
sary ground-truth data for depth and segmentation evalua-
tions. Still, no test views for intermediate articulation states
are provided, limiting quantitative evaluation of novel artic-
ulation synthesis.

SPLART PartNet-Mobility Subset. We curate an ad-
ditional articulated object dataset from PartNet-Mobility,
dubbed SPLART-PMS, to enable a more comprehensive
evaluation, including the quantitative assessment of novel
articulation synthesis. Our dataset comprises 22 object in-
stances from categories not included in PARIS-PMS, with
12 revolute and 10 prismatic objects. For the test split,
we also generate ground-truth depth and part segmenta-
tion maps to facilitate relevant evaluations. Crucially, while
PARIS-PMS restricts articulation states to binary values,
SPLART-PMS uniformly samples states from[� 0:1; 1:1],
demanding accurate estimation of articulation, part segmen-
tation, and object reconstruction for correct view synthesis.

State 0 Static Part Mobile Part State 1

Table 3. Real-World Articulated Object Reconstructions

Our experiments reveal that SPLART-PMS poses a greater
challenge than PARIS-PMS—the latter being almost per-
fectly solved by our method.

Real-World Dataset. To show the ef�cacy of SPLART on
real-world usage, we collect a dataset consisting of 7 real-
world objects with 9 articulations in total, including com-
mon objects like monitor, cabinet, glasses, etc. All images
are captured by a hand-held phone camera. Camera param-
eters are calibrated following strategies detailed in Sec. 3.3.
We qualitatively evaluate SPLART on this dataset.

4.2. Evaluation Metrics

Articulation Estimation. We evaluate the accuracy of ar-
ticulation estimation depending on its type.
• A revolute articulation describes a rotation around some

line in 3D space, parameterized by the pivot pointp on
the line, the line's directional axisa, and the angle of ro-
tation� . We report the angular error erra (in � 10� 2 DEG)
between the predicted and ground-truth axes, the geodesic
distance errr (in � 10� 2 DEG) between the predicted and
ground-truth rotations induced by the axis-angle (a-� )
pair, and the pivot point error errp. Since the pivot can
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