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Figure 1: NeRFuser. Starting from separately constructed input NeRFs, NeRF A and NeRF B, we render images at novel
viewpoints, including those not well-covered by either input NeRF. Our proposed registration through re-rendering followed
by a novel blending procedure leads to a higher quality result (lower right) than renders from the original NeRFs (A or B).

Abstract

A practical benefit of implicit visual representations like
Neural Radiance Fields (NeRFs) is their memory efficiency:
large scenes can be efficiently stored and shared as small
neural nets instead of collections of images. However, op-
erating on these implicit visual data structures requires ex-
tending classical image-based vision techniques (e.g., regis-
tration, blending) from image sets to neural fields. Towards
this goal, we propose NeRFuser, a novel architecture for
NeRF registration and blending that assumes only access
to pre-generated NeRFs, and not the potentially large sets
of images used to generate them. We propose registration
from re-rendering, a technique to infer the transformation
between NeRFs based on images synthesized from individ-
ual NeRFs. For blending, we propose sample-based inverse
distance weighting to blend visual information at the ray-
sample level. We evaluate NeRFuser on public benchmarks
and a self-collected object-centric indoor dataset, showing
the robustness of our method, including to views that are
challenging to render from the individual source NeRFs.

Code available at https://github.com/ripl/nerfuser
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1. Introduction
The transmission of visual data relies on efficient video

and image encoding and decoding, technologies with
decades of development behind them. Most computer vi-

sion methods and tools are specialized to this type of data—
methods that align and blend images are ubiquitous [32] and
fundamentally designed to work on explicit 2D representa-
tions of images.

However, a new learning-based representation for visual
data has emerged in recent years: neural fields [39]. Pi-
oneered by neural radiance fields (NeRFs) [16], these im-
plicit representations allow for efficient visual compression
and impressive view synthesis, generating a potentially in-
finite set of possible views from a fixed set of training im-
ages. Despite the promise of this representation as a storage
and communication format, there is a lack of tools that treat
NeRFs as data, much like common image processing tools
treat images.

Towards expanding the utility of NeRFs as a data rep-
resentation, we propose NeRFuser (Fig. 1), a NeRF fusion
framework for the registration and blending of pre-trained
NeRFs. Treating input NeRFs as black boxes (i.e., raw
data), without access to the images that generate them, our
method can register NeRFs (in both pose and scale) and ren-
der images from blended NeRFs. Removing the need for
source images also greatly reduces memory consumption.

https://github.com/ripl/nerfuser


A typical scene may be captured by 100 images, each about
1MB in size. In contrast, NeRF, which acts as a compres-
sion of the individual images, provides an implicit represen-
tation of the scene that takes up approximately 5MB, a 20×
reduction from the set of original images. Directly transfer-
ring this implicit representation makes it possible to build
real-time 3D capturing applications (e.g. NeRF streaming).

NeRFuser fuses NeRFs in two steps: registration and
blending. For the first step, we propose registration from
re-rendering. It takes advantage of the ability of modern
NeRFs to synthesize high-quality views, which enables us
to make use of a 2D image matching pipeline for the 3D
NeRF registration task. For the second step, inspired by
BlockNeRF [33], we propose a fine-grained sample-based
blending method, including a novel compatible weighting
method. In summary, we propose (i) a novel registration
from re-rendering method, that aligns uncalibrated im-
plicit representations and solves for relative scale and pose;
and (ii) a new blending method to composite predictions
from multiple NeRFs, resulting in blended images that are
better than images rendered by any individual NeRF.

2. Related Work
2.1. Neural Radiance Fields

A Neural Radiance Field (NeRF) [33] is a parametric
representation of a 3D scene. It optimizes a neural network
composed of MLPs to encode the scene as density and ra-
diance fields, which can be used to synthesize novel views
through volumetric rendering. Since its introduction, many
follow-up works [2, 17, 3, 41, 31, 34] have improved over
the original implementation.

One line of improvement involves the reconstruction of
large-scale NeRFs [38, 43, 33, 30, 46, 45, 35, 21, 33].
However, most of these works focus on reconstructing
the entire scene with a single model. While progres-
sive training [38, 30] and carefully designed data struc-
tures [43, 46, 45] have helped to expand the expressivity
of a single model, other works [21, 33] have shown that a
collection of many small models can perform better, while
maintaining the same number of parameters. Our method
provides a novel way to reason over many small models,
combining them to improve performance.

2.2. NeRF Registration

NeRFs are optimized from posed images, with poses
usually obtained using a structure-from-motion (SfM)
method [28, 29, 26, 27, 8, 22, 9]. Because these methods
are scale-agnostic, the resulting coordinate system will have
an arbitrary scale specific to each NeRF. Jointly using mul-
tiple NeRFs requires NeRF Registration, i.e.,solving for the
relative transformation between their coordinate systems.

Note that the setting is different from “NeRF Inver-

sion” [40, 14] that estimates the 6-DoF camera pose rela-
tive to the pre-trained NeRF given an image, a technique
that has been used for NeRF-based visual navigation and
localization [1, 15, 6]. However, these tasks can potentially
be handled by NeRFuser if formulated as NeRF-to-NeRF
pose estimation. Also relevant are works that jointly op-
timize NeRF representations along with the poses and in-
trinsics [13, 37, 12]. However, NeRFuser only uses SfM
on re-rendered images, and does not modify the pre-trained
NeRFs themselves.

While there is a large body of work on registration for
explicit representations (e.g., point-clouds) [20], there are
few works on NeRF registration. To the best of our knowl-
edge, there are two works related to ours: nerf2nerf [10] and
Zero-NeRF [19]. Both approaches perform registration in a
purely geometric way—extracting surfaces from the NeRF
representations, and thus do not take full advantage of the
rich encoded radiance information and its rendering capa-
bility. Further, nerf2nerf is only capable of local registra-
tion under a known scale, and even then requires a reason-
able initialization in the form of human annotations. On the
other hand, our method performs scaled global registration
and does not require any human annotations.

2.3. NeRF Blending

Image blending is a highly researched topic in compu-
tational photography [5, 4], but few works have discussed
blending in terms of NeRFs. Relevant is Block-NeRF [33],
which blends NeRFs in both image- and pixel-wise man-
ner. It introduces two ways to measure the blending weights
of NeRFs: inverse distance weighting (IDW) and visibility
prediction. IDW computes the contribution of each NeRF
according to:

wi ∝ d−γ
i , (1)

where di is some notion of distance between the camera and
elements of NeRF i, γ ∈ R is a positive hyper-parameter
that modulates the blending rate.

Building on this work, we propose a blending approach
that operates on ray samples, as well as a new IDW method
for sample-wise blending. NeRFuser provides a principally
more refined way of blending, which we show leads to
sharper images.

3. Methodology

In this section we will first describe our NeRF regis-
tration method registration from re-rendering and then our
blending technique IDW-Sample.

3.1. Background

In this section we include background information
on volumetric rendering and inverse distance weighing



Figure 2: Qualitative comparison of blending methods. Our proposed IDW-Sample produces high-quality blending for both
chairs, while baseline methods fail on at least one chair. Notice that the blended results (e.g., IDW-Sample) are even sharper
than the real test image, which exhibits motion blur, demonstrating an advantage of fusing information from multiple NeRFs.

(IDW) [33] methods for neural radiance field (NeRF) [16]
blending.

3.1.1 Volumetric Rendering

Given a 3D point p and a viewing direction d, NeRF R
predicts the scene density σ at that point and its color c
when viewed along direction d

[σ(p), c(p,d)] = R(p,d). (2)

To render novel views, consider the image pixel correspond-
ing to camera ray r = (o,d), where o is the camera’s opti-
cal center and d is the ray direction.

In practice, non-overlapping samples are proposed along
the ray at locations with significant predicted density. As-
suming K intervals of length δk sampled along ray r at a
distance of tk from o, a NeRF predicts the density and color
for each sample as

σk = σ(o+ tkd), (3a)
ck = c(o+ tkd,d). (3b)

The accumulated color is

C(r) =

n∑
k=1

Tkαkck, (4)

where αk = 1− exp(−σkδk) is the probability that light is
blocked in this sampled interval of length δk along the ray
at location tk. The probability of light reaching this interval
(i.e., not being blocked along the way) is then

Tk =

k−1∏
l=1

(1− αl) = exp

(
−

k−1∑
l=1

σlδl

)
. (5)

Additionally, termination probability is defined as

pk = Tkαk, (6)

which is the probability of light traveling along r and get-
ting blocked at sample k. Equation 4 thus becomes

C(r) =

n∑
k=1

pkck. (7)

3.1.2 NeRF Blending with IDW

When using multiple NeRFs to render an image, the contri-
bution of each NeRF can be determined using inverse dis-
tance weighting (IDW)

wi ∝ d−γ
i , (8)

where di is the Euclidean distance of the blending ele-
ment (e.g. ray sample in IDW-Sample) to NeRF i’s ori-
gin, γ ∈ R+ is a hyper-parameter that modulates the blend-
ing rate. Block-NeRF [33] proposes two variants of IDW,
namely IDW-2D and IDW-3D, which we discuss below.

IDW-2D blends images using an image-wise weighting

I =
∑
i

wiIi, (9)

where we use the distance between the query camera center
and NeRF i’s origin as di to compute wi. While IDW-2D
works well when the query camera is much closer to one of
the NeRFs than the others, it suffers when the query camera
is roughly of the same distance from all source NeRFs. In



the later case, the blended image will be a blurry mixture af-
fected by noisy regions existing in source images, resulting
in poor visual quality.

IDW-3D is a pixel-wise weighting strategy that considers
the distance between the origin xi of each NeRF i and the
3D coordinates p

(j)
i of pixel j determined using the ex-

pected depth predicted by NeRF i,

d
(j)
i = ∥xi − p

(j)
i ∥2. (10)

Each pixel j is then rendered by substituting d
(j)
i into Equa-

tion 8 as
I(j) =

∑
i

w
(j)
i I

(j)
i . (11)

The major problem with IDW-3D is that, to accurately ob-
tain the expected point of ray termination p

(j)
i , it requires

NeRF i to faithfully predict the depth for pixel j. This
is not always fulfilled since (i) NeRFs are not known to
accurately reconstruct the scene geometry; and moreover,
(ii) source NeRFs will be focusing on different portions of
the scene by design, leading to invalid blending weights.
Empirically, IDW-3D usually performs the worst among all
blending methods.

3.2. Registration from Re-Rendering

The first step of our pipeline is to estimate the relative
transformations between two or more input NeRFs.

We assume that each NeRF is trained on a separate set of
images, capturing different, yet overlapping, portions of the
same scene (i.e., each input NeRF has at least one neigh-
bor). We do not assume a specific type of training data,
e.g., the poses used to train the NeRFs may have come from
KinectFusion [18] and have metric scale, or they may be
the result of a SfM pipeline (e.g., COLMAP [29]) and thus
have arbitrary scale.

As a result, each NeRF may have a unique coordinate
system that is inconsistent with the others, in terms of trans-
lation and rotation as well as scale. Without loss of gener-
ality, the following discussion focuses on the registration of
two NeRFs, A and B, as the extension to more than two
NeRFs is straightforward.

Our goal is to find the transformation TBA ∈ SIM(3)
that transforms a 3D point pB in NeRF B to its corre-
sponding point pA in NeRF A as pA = TBApB . Note that
TBA =

[
RBA tBA
0 1

]
SBA can be decomposed into a rotation

RBA, translation tBA, and uniform scaling of factor sBA,
where SBA is a diagonal matrix diag(sBA, sBA, sBA, 1).

First, we assume that the NeRFs are produced with suf-
ficient training views, so that they can generate high quality
novel views. We then sample a set of poses (e.g. uniformly
on the upper hemisphere), which we use as local poses to
query both NeRFs to get re-renderings.

We re-purpose off-the-shelf structure-from-motion
methods (SuperPoint as the feature [8] and SuperGlue as
the matcher [27]) on the union of re-rendered images from
the two NeRFs in order to recover their poses in the same
coordinate system, which we then use for registration, as
discussed next.
Procedure and Notation Given the trained model of NeRF
A, we query it with sampled camera poses

{
GA

Ai

}
i

to syn-
thesize images {IAi

}i. GA
Ai

∈ SE(3) is specified as a pose
matrix that transforms a point from the coordinate system
of camera Ai to that of NeRF A. IAi

is the image synthe-
sized from NeRF A using the query pose GA

Ai
. Likewise, we

query NeRF B with
{
GB

Bi

}
i

to synthesize images {IBi}i.
We then feed images {IAi}i ∪ {IBi}i as input to SfM, and
obtain poses

{
GC

Ai

}
i

and
{
GC

Bi

}
i

as output. GC
Ai

∈ SE(3)
is the recovered pose of image IAi

from SfM. It is specified
as a pose matrix that transforms a point from the coordinate
frame of camera Ai to C, where C is the coordinate sys-
tem determined by this SfM execution. Note that an SE(3)
pose matrix does not involve scale, so the induced camera-
to-world transformation always assumes a specific camera
instance that shares the same scale as the world.
Recovering Scale Let SAC = diag(sAC , sAC , sAC , 1) be
the scale matrix from NeRF A to C, meaning that one unit
length in NeRF A equals sA units in C. Considering Gij ∈
SE(3) as the pose of camera Ai relative to camera Aj when
specified in C’s scale, we have

Gij = GC
Aj

−1
GC

Ai
using C as bridge

= SACG
A
Aj

−1
GA

Ai
SAC

−1 using A as bridge
(12)

If we further dissect GC
Ai

as
[
RC

Ai
tCAi

0 1

]
and repeat this for

GC
Aj

, GA
Ai
, GA

Aj
, Equation 12 becomes

(13)

[
RC

Aj

⊤
RC

Ai
RC

Aj

⊤
(tCAi

− tCAj
)

0 1

]

=

[
RA

Aj

⊤
RA

Ai
sACR

A
Aj

⊤
(tAAi

− tAAj
)

0 1

]
.

Note that all components involved in Equation 13 are either
determined when sampling camera poses or given by SfM
with the exception of sAC , which is what we want to re-
cover. Specifically, equating the L2 norm of the translation
part from both sides of Equation 13 gives

sAC =
∥tCAi

− tCAj
∥2

∥tAAi
− tAAj

∥2
(14)

In practice, we use the median over all i, j pairs to construct
SAC . SBC is recovered similarly.



Recovering Transformations Let TAC ∈ SIM(3) be the
transformation from NeRF A to C. Using camera Ai as
bridge, we have TAC = GC

Ai
SACG

A
Ai

−1. In practice, we
compute TAC over all instances of camera Ai, and choose
the closest valid SIM(3) transformation to the median re-
sult. TBC is recovered similarly. We then compute NeRF
B to NeRF A transformation as TBA = TAC

−1TBC .
Robustness to pose estimation errors While our proposed
registration method works better with more accurate SfM
results on NeRF-synthesized images, it is also robust to
SfM’s errors. When computing the relative scale, we only
need to recover at least two poses (so that at least one pair
is formed to be used in Equation 14) from each NeRF’s
re-renderings. This is easily achievable with a reasonably
sampled set of query poses. Moreover, since we consider
the median result as the final estimation, the impact of erro-
neous poses will be minimal. A similar analysis also holds
for transformation recovery, except that only a single pose
is needed for the estimation.

3.3. NeRF Blending

Given two or more registered NeRFs and a query cam-
era pose, NeRF blending [33] aims to combine predictions
from the individual NeRFs with the goal of high-quality
novel view synthesis. Without loss of generality, we con-
sider again the two-NeRF setting: A and B with relative
transformation TBA ∈ SIM(3). Let GB ∈ SE(3) be a pose
defined in NeRF B’s coordinate system that can be used to
query NeRF B. To get the corresponding pose GA to query
NeRF A, we first decompose TBA = GBASBA, and com-
pute GA = TBAGBSBA

−1.
For blending, there are three key concepts to con-

sider: (i) when to blend: in what case should it be used;
(ii) what to blend: at what granularity should it happen;
and (iii) how to blend: in which way should we compute
blending weights? Block-NeRF [33] answers (i) with visi-
bility thresholding, where if the mean visibility of a frame
(predicted by a visibility network) is above a certain thresh-
old then blending is activated. Afterwards, it answers (ii)
by introducing image- and pixel-wise blending. Finally, it
handles (iii) by inverse-distance-weighting (IDW) and pre-
dicted visibility weighting. Importantly, to achieve any
of these results, a visibility prediction network has to be
trained jointly with the NeRF and used during inference. In
our setting, we do not assume access to a visibility network,
since we are dealing with black-box uncalibrated NeRFs not
generated for this particular purpose.

In this paper, we answer (i) by proposing a simpler
threshold that is solely based on distance. We answer (ii)
by proposing a novel sample-based blending method recog-
nizing the fact that the color of a pixel is computed using
samples along the ray in NeRF during volumetric render-
ing. We answer (iii) by proposing an IDW method for our

Figure 3: An illustration of how ray samples proposed by
two NeRFs are merged based on their locations and lengths.
Top: two sets of ray samples proposed by NeRF A and
NeRF B; Bottom: the single set of merged ray samples.

sample-based blending. Since we use IDW with sample-
based blending, we coin our method IDW-Sample.

Without loss of generality, we discuss the blending of
two registered NeRFs, A and B. Our findings easily extend
to an arbitrary number of NeRFs and also to any volumetric
representation.

3.3.1 Distance Test for NeRF Selection

The decision of when to render using blended NeRFs,
rather than just one NeRF, is an important question, because
NeRFs can only render with high-quality within their effec-
tive range. Rendering using distant NeRFs, whose render-
ing quality is poor, can only be harmful. Hence, we intro-
duce a test based on the distance between the origin of the
query camera and the NeRF centers. Denoting the distances
from NeRF A and NeRF B as dA and dB , the test value is
τ = max

(
dA

dB
, dB

dA

)
. If τ is greater than a threshold, it

means that the second-closest NeRF is sufficiently far, in
which case it is better to simply use the rendering of the
closest NeRF to the query camera; otherwise, IDW-based
blending is enabled.

3.3.2 IDW-Sample for NeRF Blending

During NeRF’s volumetric rendering stage, a pixel’s color
is computed using samples along the ray. Recognizing this
fact, we propose a sample-wise blending method that calcu-
lates the blending weights for each ray sample using IDW.
We show that the original volumetric rendering method-
ology can be easily extended to take advantage of these
new sample-wise blending weights, resulting in our pro-
posed IDW-Sample strategy. Merge Ray Samples Consider
a pixel to be rendered, which gets unprojected into a ray.
Since ray samples are separately proposed according to the
density field of each source NeRF, we need to merge them



Figure 4: Illustration of IDW-based blending methods.
IDW-2D depends on the distance between camera center
and NeRF centers. IDW-3D depends on the distance be-
tween estimated ray depth and NeRF centers. IDW-Sample
depends on the NeRF centers and sample positions that are
irrespective to depth quality, which is major downside of
IDW-3D.

into a single set. As illustrated in Figure 3, given samples
{(tAk , δAk )}k and {(tBk , δBk )}k proposed from NeRF A and
NeRF B, respectively, we merge them into a single set of
ray samples {(t̄k, δ̄k)}k by taking the sample location t and
length δ. We update the termination probability and color
of each new sample in the merged set for each source NeRF.
Given a ray sample proposed by a NeRF, we assume its ter-
mination probability mass is uniformly distributed over its
length, while its color is the same for any point within cov-
erage.
Blending Process We use IDW to compute the blending
weight for each sample. Specifically, let xi be the origin
of NeRFi for i ∈ {A,B}, o be the camera’s optical center,
r = (o,d) be the ray corresponding to pixel j to be ren-
dered, and (t̄k, δ̄k) be a ray sample from the merged sam-
ples set. We compute its blending weight as wi,k ∝ di,k

−γ ,
where di,k = ∥xi − (o+ t̄kd)∥2.

The blended pixel j is

I(j) =
∑
k

∑
i

wi,kp̄i,kc̄i,k (15)

Weights wi,k are normalized following two steps:
(i)
∑

i wi,k = 1, ∀k; and (ii)
∑

k

∑
i wi,kp̄i,k = 1.

Step (i) indicates that our method does not change the rel-
ative weighting of samples along a given ray, which is al-
ready dictated by the termination probability. Step (ii) en-
sures that the rendered pixel has a valid color. Figure 4
provides an illustration.

4. Experiments
In this section, we describe our registration and blending

experiments on Scannet, Block-NeRF, and an object-centric
scene dataset we collect, which we will make available.

4.1. Datasets

Object-Centric Indoor Scenes We created a dataset con-
sisting of three indoor scenes, using an iPhone 13 mini in
video mode. Each scene consists of three video clips – we
choose two objects in each scene, and collect two (overlap-
ping) video sequences that focus on each object. Then, we
collect a third (test) sequence that observes the entire scene.

We extract images at 3.75 fps from all three video clips
and feed them jointly to an structure-from-motion (SfM)
tool (we use the hloc toolbox [26, 27]) to recover their
poses. These poses are defined in a shared coordinate sys-
tem, which we denote as C. We then center and normalize
the poses for each training set, so that the processed poses
are located within the bounding box [−1, 1]3. Note that
this step induces a local coordinate system for each NeRF,
which we denote as A and B respectively. We record the
resulting transformations {TCA, TCB} ⊂ SIM(3) and treat
them as ground-truth. NeRFs A and B are then trained sep-
arately from the corresponding training set of images. We
test NeRFuser on this dataset and report results of both reg-
istration and blending in Section 4.2.

ScanNet Dataset Since the “ground-truth” poses of our
dataset are estimated using SfM based only on RGB im-
ages, they are potentially not as accurate as what could be
obtained using RGB-D data. Hence, we use the ScanNet
dataset to further test registration performance. The Scan-
Net dataset provides a total of 1513 RGB-D scenes with
annotated camera poses, from which we use the first 218
scenes. We downsample the frames so that roughly 200
posed RGB-D images are kept from each scene. We then
split the images into three sets: two for training NeRFs and
one for testing. Specifically, images are split according to
their temporal order. We first randomly select 10% of all
images as the test set. Of the remaining images, we label
the first 25% as training set A, the last 25% as training
set B, and randomly label the middle 50% as either A or
B. This splitting strategy creates a moderate spatial overlap
among A, B and the test sets. Once we have the splits, we
center and normalize the training poses the same way as in
Section 4.1. The resulting transformations TCA, TCB are
recorded as ground-truth. After generaring the NeRFs, we
check their quality according to validation PSNR and keep
the best 25 scenes. We test NeRF registration on this dataset
and compare with point-cloud registration in Section 4.3.

Mission Bay Dataset To further test the rendering qual-
ity of different blending methods, we run experiments on
the Mission Bay dataset from Block-NeRF [33], which fea-
tures a street scene from a single capture. The dataset is
collected using 12 cameras that capture the surround of a
car that drives along a straight street with a quarter turn



Blending Ground-truth TBA Estimated T̂BA

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NeRF 20.92 0.716 0.369 20.90 0.714 0.370
Nearest 23.81 0.779 0.283 23.68 0.774 0.287
IDW-2D 24.70 0.795 0.267 24.64 0.792 0.267
IDW-3D 23.48 0.776 0.279 23.45 0.772 0.280
IDW-Sample (Ours) 24.91 0.813 0.228 24.83 0.810 0.229

Table 1: Blending results on Object-Centric Indoor Scenes. IDW-Sample works the best for all metrics with both ground-truth
and estimated transformations. Results with estimated T̂BA are only marginally worse than those with ground-truth TBA,
which demonstrates that our proposed NeRF registration is accurate enough for the downstream blending task.

Ground-truth NeRF A NeRF B

IDW-Sample IDW-2D IDW-3D

Figure 5: NeRF blending with IDW-based methods on the Mission Bay dataset. Per-pixel errors are visualized as heat maps.
Individual NeRFs renderings have large artifacts on either side, which are best resolved by IDW-Sample blending.

at the end. The dataset has approximately 12500 images,
with poses recovered by odometry. We split the images into
training and test sets as follows: for every 30 time-stamped
images, we use the first 25 to construct a block for train-
ing and reserve the remaining 5 for testing. This results in
a total of 31 training sets that we use to construct NeRFs,
and 30 test sets between every 2 neighboring blocks. We
test the blending of two neighboring NeRFs using only the
side-view camera (cam73) from the test sets, for which the
difference of NeRF renderings are the most visible. We re-
port results in Section 4.4.

4.2. NeRF Fusion

We test NeRFuser including both NeRF registration and
NeRF blending on Object-Centric Indoor Scenes. For reg-
istration, we generate 32 poses that are roughly uniformly
placed on the upper hemisphere of radius 1, with eleva-
tion from 0 to 30◦. We use them as local poses to query
NeRFs A and B, and feed the 64 synthesized images jointly

to SfM. NeRF B to NeRF A transformation T̂BA is re-
covered using our proposed procedure. To evaluate its ac-
curacy, given ground-truth and estimated transformations
{T, T̂} ⊂ SIM(3), we first compute ∆T = T̂ T−1. It is
then decomposed into ∆G ∈ SE(3) and ∆S ∈ SIM(3) as
∆T = ∆G∆S. Rotation error rerr is computed as the an-
gle (in degrees) of ∆G’s rotation matrix. Translation error
terr is computed as the L2 norm of ∆G’s translation vec-
tor. Note that by definition, terr is measured in NeRF A’s
unit. For scale error, we extract ∆s = |∆S|1/3 and compute
serr = |log∆s|. We report TBA errors against ground-truth:
rerr = 0.031◦, terr = 0.0013, serr = 0.0045.

For blending, we set distance test ratio τ = 1.8 and
blending rate γ = 5. Since it depends on the NeRF B
to NeRF A transformation, we report results in two set-
tings: (i) using ground-truth TBA and (ii) using estimated
T̂BA. The second setting is specifically used to showcase
the compound performance of the full NeRFuser frame-
work. In addition to IDW-based methods, we also include



Figure 6: Effect of re-rendering poses on NeRF registra-
tion. With more sampled poses, the registration errors go
down while success rate improves (green curve). Using ad-
ditional hemispheric poses besides the training ones also
proves helpful (orange line vs. blue line). More interest-
ingly, with a large enough ratio ρ, registration with hemi-
spherically sampled poses outperforms training poses when
using the same number or fewer poses in total. It shows that
it is beneficial to have a larger spatial span of re-rendering
poses for registration as illustreated in Figure 8.

NeRF and Nearest as baselines. NeRF directly uses NeRF-
synthesized images, while Nearest uses the rendering from
the closer NeRF to the query pose. We evaluate blend-
ing results against ground-truth images on three metrics:
PSNR [11], SSIM [36] and LPIPS [42]. We report num-
bers averaged over test images of all three scenes from our
dataset in Table 1.

4.3. NeRF Registration

To further test the registration performance on a large-
scale dataset, we use the ScanNet dataset [7] as prepared
according to Section 4.1. We repeat the same registration
procedure as detailed in Section 4.2, except that 60 hemi-
spheric poses are sampled instead of 32. During experi-
ments, we notice failure cases due to NaN or outlier val-
ues. To report more meaningful numbers, we treat cases
that meet any of the following conditions as failure: (i) is
NaN or (ii) rerr > 5◦ or (iii) terr > 0.2 or (iv) serr > 0.1.

We also compare our method against various point-
cloud registration (PCR) baselines using both (i) point–
clouds extracted from NeRFs and (ii) point-clouds fused
from ground-truth posed RGB-D images. We describe the

Registration rerr (
◦) terr serr Success

NeRF-extracted point-cloud

ICP [23] 3.027 0.1151 N/A 0.13
FGR [44] 4.549 0.1844 N/A 0.04
FPFH [24] 2.805 0.0381 N/A 0.17

RGB-D-fused point-cloud

ICP [23] 1.598 0.0816 N/A 0.17
FGR [44] 1.330 0.0372 N/A 0.71
FPFH [24] 0.049 0.0205 N/A 0.79

NeRFuser 0.588 0.0315 0.0211 0.84

Table 2: Registration results on ScanNet. We compare to
point-cloud registration methods on both NeRF-extracted
point-cloud and ground-truth RGB-D-fusion point-cloud.
Due to the noisy geometry of NeRF reconstructions, regis-
tration performance on NeRF-extracted point-clouds is in-
ferior. However, NeRFuser is comparable to the registration
performance on RGB-D-fused methods in terms of rerr and
terr, while having the highest success rate. Our method also
recovers the relative scale, while point-cloud baselines work
on the relaxed problem of SE(3) pose recovery. Bold num-
bers are the best, italic numbers are second best.

point-cloud data preparation for each scene as below. While
there are scale-adaptive methods [25] for PCR, most avail-
able and well-tested implementations presume that the two
point-clouds to be registered are measured in the same unit.
Since TBA is measured in NeRF A’s unit, we make sure
that the measuring unit of both point-clouds is the same as
NeRF A’s. For (i) NeRF-extracted point-clouds, the unit
conversion is achieved by applying SBA to point-cloud B.
For (ii) RGB-D fused point-clouds, the unit conversion is
achieved by applying SCA to both point-clouds. Addition-
ally, note that in this case all ground-truth poses are defined
in the same world coordinate system. To enable a fair com-
parison, we further transform RGB-D fused point-cloud A
by GBA after unit conversion. After these processing steps,
we get point-clouds ready for registration, whose ground-
truth solution is GBA for both (i) and (ii). We report in Ta-
ble 2 the results of our registration method and various PCR
baselines averaged over all successfully registered scenes,
as well as the success rate.

4.4. NeRF Blending

To further test our blending performance, we use the out-
door Mission Bay dataset as described in Section 4.1, with
ground-truth transformations. We set the distance test ratio
τ = 1.2, and the blending rate γ = 10. Quantitative re-
sults averaged over test images of all scenes are reported in
Table 3. Qualitative results are visualized in Figure 5.



Figure 7: Effect of blending rate γ in IDW-based blend-
ing ranging from [0.01, 1000]. For all blending methods,
quality initially increases with γ, but then decreases as γ in-
creases further.

Blending PSNR ↑ SSIM ↑ LPIPS ↓
NeRF 17.306 0.571 0.502
Nearest 19.070 0.657 0.398
IDW-2D 19.692 0.659 0.413
IDW-3D 18.806 0.636 0.433
IDW-Sample (Ours) 19.986 0.678 0.388

Table 3: Blending results on Mission Bay dataset. IDW-
Sample performs the best for all metrics.

4.5. Ablation Studies

Ablation on re-rendering poses for NeRF registration
We study the registration performance on ScanNet dataset
w.r.t. the number of sampled poses. To account for the
fact that each scene may be of a different scale, we intro-
duce ρ as the ratio of the number of sampled poses over
the number of training views. We geometrically sample
ρ ∈ [0.167, 1.3], and generate the hemispheric poses ac-
cordingly. We evaluate the performance of NeRF registra-
tion w.r.t. ρ averaged over all ScanNet scenes. In addi-
tion, we include 2 more settings. (i) training poses only:
instead of hemispheric poses, use NeRF’s training poses for
re-rendering; (ii) hemispheric + training poses: use NeRF’s
training poses together with hemispherically sampled ones
(ρ = 0.3) for re-rendering. Results are reported in Fig-
ure 6. We want to additionally highlight that, since registra-
tion using a relatively small number of sampled poses for
re-rendering can still work well, it implies that the registra-
tion procedure will not take long. In practice, it typically
only takes minutes to finish.

Figure 8: Distributions of training poses and sampled poses
on a ScanNet scene used for NeRF registration. Sample
poses are less cluttered than training ones that come from a
handheld camera trajectory, which results in a wider base-
line for easier SfM.

Ablation of γ in IDW-based blending We study the ef-
fect of blending rate γ in IDW-based blending on Object-
Centric Indoor Scenes. Specifically, we use ground-truth
transformations and set distance test ratio τ = 1.8. We geo-
metrically sample γ in [10−2, 103]. For each sampled γ, we
blend NeRFs with all IDW-based methods and report the re-
sults averaged over test images of all 3 scenes from Object-
Centric Indoor Scenes. Since Nearest and NeRF are not af-
fected by γ, we draw dotted horizontal lines for comparison.
The results are shown in Figure 7. In γ → 0 case, all IDW-
based methods become the same as using the mean image.
In γ → ∞ case, IDW-2D becomes the same as Nearest,
while IDW-Sample becomes analogous to KiloNeRF [21]
(more details in appendix 6.2). We find the optimal γ in be-
tween the extremes for any IDW-based method. Moreover,
our proposed IDW-Sample almost always performs the best
for any given γ.

Ablation on Blending Performance over Query Poses
We provide a qualitative ablation study to showcase the per-
formance of our proposed blending method IDW-Sample
against baselines for different test poses with respect to two
NeRF centers in Figure 9. The study is supposed to provide
a geometric sense of where the blending method gives the
most benefits.

5. Conclusion
We have introduced NeRFuser, a NeRF fusion pipeline

that registeres and blends arbitrary many NeRFs treated
as input data. To address the problem of registration, we
propose registration from re-rendering, taking advantage
of NeRF’s ability to synthesize high quality novel views.
To address the problem of blending, we propose IDW-
Sample, leveraging the ray sampling nature of NeRF ren-
dering. While we have demonstrated NeRFuser’s robust
performance in multiple scenarios, it inherits any of the fail-
ure cases of the input NeRFs. Variants that use structured
priors can easily be integrated into our framework, since it



Figure 9: A visualization of how IDW-Sample performs
against Nearest. The axes denote the reference frames for
two input NeRFs, while the green camera frusta denote the
test camera poses. The darker the camera frusta, the bet-
ter IDW-Sample performs compared to Nearest. The best-
performing poses are those that evenly observe the scene.

is agnostic to the source NeRFs. We believe this tool will
help enable the increased proliferation of implicit represen-
tations as raw data for future 3D vision applications.
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Figure 10: Effect of the blending rate γ ranging from
[1, 103]. Blending quality first increases with γ, then starts
to decrease as γ increases further. For any given γ, our
IDW-Sample works the best.

6. Appendix
6.1. Ablation of γ in IDW-based Blending on the

Mission Bay Dataset

We additionally present the blending rate γ ablation on
Mission Bay Dataset. Specifically, we use ground-truth
transformations and set distance test ratio τ = 1.2. We
geometrically sample γ in [1, 103]. For each sampled γ, we
blend NeRFs with all IDW-based methods and report the re-

sults averaged over test images of all scenes from the Mis-
sion Bay Dataset. Since Nearest and NeRF are not affected
by γ, we draw dotted horizontal lines for comparison. The
results are shown in Figure 10.

6.2. Connection to KiloNeRF

In this section we establish a relationship between IDW-
Sample and KiloNeRF [21]. Within the framework of our
IDW-Sample method, KiloNeRF is a special case when the
blending rate γ → ∞. Intuitively, KiloNeRF employs a
grid of small NeRFs within the axis-aligned bounding box
of the scene, where each small NeRF is only responsible
for the spatial cube it occupies. Specifically, given a sample
(δ, t) on ray (o,d), KiloNeRF first determines which grid
it falls into based on the ray sample location o + td. The
NeRF corresponding to this grid will be given a weight of 1,
while all other NeRFs will be weighted 0. In IDW-Sample,
if we set the power γ to infinity, it means that, for each
ray sample, it will only take the field information from the
closest NeRF, but not a weighted sum of information from
all NeRFs. Thus, only the closest NeRF becomes respon-
sible for that sample, which resembles the case for KiloN-
eRF. Our method generalizes this approach, since we can
freely choose a γ smaller than infinity to tune the range that
each NeRF is responsible for, which results in better ren-
dering quality (see how IDW-Sample in Figure 10 degrades
as γ → ∞). An ablation study of γ is provided on both the
Object-centric Indoor Scenes (in the main document) and
the Mission Bay Dataset (in subsection 6.1).
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