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ABSTRACT

Recent research and advances in robotics have led to the development of novel platforms leveraging new sensing
capabilities for semantic navigation. As these systems become increasingly more robust, they support highly
complex commands beyond direct teleoperation and waypoint finding facilitating a transition away from robots
as tools to robots as teammates. Supporting future Soldier-Robot teaming requires communication capabilities
on par with human-human teams for successful integration of robots. Therefore, as robots increase in function-
ality, it is equally important that the interface between the Soldier and robot advances as well. Multimodal
communication (MMC) enables human-robot teaming through redundancy and levels of communications more
robust than single mode interaction. Commercial-off-the-shelf (COTS) technologies released in recent years for
smart-phones and gaming provide tools for the creation of portable interfaces incorporating MMC through the
use of speech, gestures, and visual displays. However, for multimodal interfaces to be successfully used in the
military domain, they must be able to classify speech, gestures, and process natural language in real-time with
high accuracy. For the present study, a prototype multimodal interface supporting real-time interactions with
an autonomous robot was developed. This device integrated COTS Automated Speech Recognition (ASR), a
custom gesture recognition glove, and natural language understanding on a tablet. This paper presents perfor-
mance results (e.g. response times, accuracy) of the integrated device when commanding an autonomous robot
to perform reconnaissance and surveillance activities in an unknown outdoor environment.

Keywords: Human Robot Interaction, Multimodal Communication, Automated Speech Recognition, Natural
Language Understanding

1. INTRODUCTION

For several years now, the Department of Defense (DoD) has funded research to further the capabilities of
robots to support advanced Soldier-Robot (SR) teaming as depicted in much of present day science fiction.
Programs from the US Army Research Laboratory (ARL) such as the Robotics Collaborative Technology Alliance
(RCTA) describe concepts where robots are no longer used as tools, but rather collaborators within mixed-
initiative teams.1,2 Recent advances fueled under these efforts have led to the development of novel robotic
platforms incorporating new sensing capabilities enabling semantic navigation. With semantic navigation and
mission planning capabilities, robots are now able to execute more complex and sometimes abstract commands
such as “move quickly to the car behind the building”.3–5 To enable Soldiers to use these new platforms and
their capabilities, communication interfaces must be enhanced to facilitate seamless integration and effective SR
teaming.

One approach for advancing SR communication highlighted in literature is the use of multimodal commu-
nication (MMC). MMC is a model where six common themes emerge: meaning, context, natural, efficiency,
effectiveness, and flexibility. With MMC, more complex information can be conveyed over multiple modes
compared to single mode,6 with ideas conveyed redundantly (back up signals) or non-redundantly (multiple mes-
sages).7,8 Ultimately, MMC supports multiple levels of complexity.6 Similar is the case for the natural theme,
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such that MMC results in more robust, natural, and efficient communication.9 Leveraging natural forms of com-
munication (e.g. speech and gestures) modeled after human-to-human communication is therefore most likely
to support seamless integration of robots with their human counterparts without adding additional cognitive or
task demands.

2. MULTIMODAL INTERFACE

In order to investigate the effectiveness of MMC based-on human-to-human communication for SR teaming,
a prototype multimodal interface (MMI) was developed. The goal for this device was to enable real-time bi-
directional communication with a robot teammate through natural and intuitive forms of communication (e.g.
speech, gestures). For the present study, real-time is defined as how long it takes from the end of issuing a
command until the interface completes input classification followed by transmission and receipt of the command
with a robot. For efficient bi-directional communication in SR teaming, processing time for issued commands
must be kept to a minimum, as delays can greatly impact system usability.10

Two modalities were selected in the design of the MMI, auditory (speech, audio cues, text-to-speech) and
visual (gestures, tablet display), Figure 1. With different combinations of these modalities, the MMI enables a
user to interact with a robot using single, dual, or redundant channels of communication. For example, a speech
command to the robot with confirmation on a visual display, gesture command with response via text-to-speech,
or speech with combined audio and visual feedback. Through flexible selection of communication channels, a user
can maximize heads-up time without a requirement to look at a screen, but still have this information available
for cases where the robot is no longer in line-of-sight or the data cannot easily be conveyed otherwise (e.g. image
of unknown object).

Figure 1. Illustration of bi-directional communication between a Soldier and robot (Left), and image of visual display
from prototype MMI (right). For bi-directional communication, the Soldier issues commands using speech, gestures, or
combination thereof, with responses from the robot delivered via auditory cues, text-to-speech, and visual display. The
visual display of the MMI contains a top down interactive map, live video feed, current command, and robot status
information.

Following the selection of speech and gestures for human-to-robot communication, the need for automated
speech recognition (ASR), gesture recognition (GR), and natural language understanding (NLU) capabilities
were further identified resulting in the system diagram illustrated in Figure 2.



Figure 2. High-level diagram of multimodal interface components. Automated speech and gesture recognition modules
convert user inputs to text. The input handler then sequences and/or pairs the text together and passes to the execution
monitor. The execution monitor converts text to a robot command using natural language or atomic handler modules
before sending to the robot using a command and control (C2) interface. Robot world model and state data from the C2
interface is updated within the execution monitor and passed to the output handler which triggers audio and updates the
visual display.

2.1 Gesture Recognition (GR)

Arm and hand gestures are a natural form of communication for Soldiers, with many signals codified in the U.S.
Army Field Manual for Visual Signaling.11 For classification of arm and hand gestures, the MMI incorporated
a glove embedded with an inertial measurement unit (IMU) and flex resistors, Figure 3.

Figure 3. MMI gesture recognition glove. A 3D printed box on the back of the glove houses electronics and power, with
flex resisters sewn inside the glove along the finger tips.



The instrumented ”gesture glove” was based off of a previous design described in Barber et al.,12 and was
selected for its high classification accuracy across many unique gestures, hands-free nature, and previous integra-
tion with robots. The gesture glove included much of the same hardware from the previous version, including a 9
degrees of freedom Razor IMU13 containing single axis gyro, dual axis gyro, triple axis accelerometer, triple axis
magnetometer, and flex resistors. The Razor IMU was selected for its low cost, ability to measure ±16 g of force,
magnetometers for pointing gestures, and expandability to support analog inputs from the flex resistors. The
flex resistors sewn into the glove along the wearers fingers enable detection of finger positions (open or closed).
Other hardware changes include a Bluetooth 4.0 module for wireless communication and an open-fingered glove
with shorter flex resistors. The latter change was made to allow use of finger tips on touch screen devices, better
fit the user, and to ensure flex resistors ended just past the wearers knuckles. In previous implementations of
the gesture glove, depending on the wearers hand-size, the resistors could extend past finger tips resulting in
the resistors becoming bent or pinched when a closed fist was made.? The final version of the glove, pictured
in Figure 3, integrated all electronics within a custom 3D printed box on the back of the glove and supports
charging using a Micro-USB cable.

For the current effort, the GR system supported a total of nine gestures: Forward, Backward, Left, Right,
Clockwise, Counter Clockwise, Resume, Pause, and Pointing, Table 1. To perform each gesture, the user created
a fist (closed hand) to signal the start, and when finished released the fist (open hand). The flex resistors in the
glove detected when the wearer made and release a fist, passing the window of data collected during that time
to the statistical classifier described in Barber et al.12 The only exception to this process is for pointing gestures
which are detected using static pose heuristics which monitor for combinations of flex resistor values indicating
only the index finger is extended and lack of motion of the hand from IMU sensors. Although classified using
the gesture glove, pointing gestures were not incorporated into robot commands at the time of this writing, but
are planned for use in future efforts to resolve objects/points of interest in speech commands.



Table 1. Arm and hand gestures, resulting robot action, and description of how each gesture was performed.

Gesture Action Gesture Motion

Forward Move forward Elbow starts tucked into side, with forearm
and bicep at 90 degrees. Arm extends forward
(pushing out) until extended keeping hand
parallel to ground.

Backward Move backward Arm starts extended out from body, parallel
with ground, move elbow inward until tucked
next to body (pulling towards body), with
forearm and bicep at 90 degrees and hand still
parallel to ground.

Left Step left Starting with arm extended out from body
with hand parallel to the ground, swing left
towards chest 90 degrees while keeping hand
parallel to ground.

Right Step right Staring with arm to your left (against body)
with fist palm-down down and parallel to
ground, swing right 90 degrees while keeping
hand parallel to ground.

Rotate Right Rotate clockwise Starting with arm extended out from the body
with fist palm-down, perform a circle rotating
clockwise with a diameter of approximately 1
foot.

Rotate Left Rotate counter-clockwise Starting with arm extended out from the body
with fist palm-down, perform a circle rotating
counter-clockwise with a diameter of approxi-
mately 1 foot.

Resume Resume previous com-
mand/action

Hold the arm extended to the rear behind your
head and swing the arm overhead and forward
in the direction of movement. Finish with
the palm facing down when arm is horizontal.
Matches ADVANCE or MOVE OUT Visual
Signal from Army Field Manual.

Pause Pause execution of current
command/action

Starting with arm at rest or or extended, ro-
tate up until arm is bent at 90 degrees with
fist palm-out away from body to the right of
your head (hold gesture).

Pointing N/A Pointing gesture with index finger out and all
other fingers closed. User points index finger
at a location or point of interest.

2.2 Automated Speech Recognition (ASR)

More than gestures, speech is the primary method of human-to-human communication, enabling transmission of
complex ideas and instructions. Speech is increasingly being incorporated into commercial-off-the-shelf products
from gaming, mobile-devices, and personal computers.14–16 With commercial applications driving requirements
and capabilities, automated speech recognition (ASR) technologies have rapidly increased in their performance.



Several commercial-off-the-shelf software development kits facilitate capture and conversion of speech to text
for use in custom applications. For the MMI, several products were reviewed, resulting in the selection of the
Microsoft Speech Platform SDK Version 11.17

The Microsoft Speech Platform SDK was selected based on previous performance analyses comparing it
to other commercial-off-the-shelf products. These results demonstrated a classification accuracy of 98.96% on
a command set developed for a robot spatial navigation-task using a squad-level vocabulary (SLV).18,19 The
Microsoft Speech Platform SDK is a grammar-based classifier, requiring creation of a dictionary defining all
combinations of speech the target system supports. Although grammar-based classifiers limit the use of full
natural language when using speech to command a robot, the resulting performance is higher due to the smaller
search space for grounding and reduced chance of misclassifying random speech utterances not intended for the
robot.18 One additional feature of the selected ASR is the ability to run off-line without a requirement for a
connection to a remote server for classification. This off-line support enables the MMI to function in outdoor
areas where a network connection is not possible, and without any added latency from communication with
remote servers. To further reduce the chance of speech misclassification, all speech commands added to the
grammar-dictionary required use of a robots’ call-sign when giving an order. For example, ”husky, navigate to
the car near the building.” Upon completion of classification, the ASR provided text and classification confidence
are sent to the MMI Input Handler.

2.3 Input Handler and Command Generation

As illustrated in Figure 2, the Input Handler module receives all classified data from the GR and ASR software
components. During classification, both components generate events indicating that a gesture or speech utterance
has started which the Input Handler stores. Upon completion of classification, the Input Handler first verifies
that the confidence value for a given classified input/text exceeds pre-defined thresholds. If this test is passed,
the resulting text is sent to the Execution Monitor. In then event that more than one input modality is active
at the same time, (e.g. user finishes gesture but is still speaking), the Input Handler will suspend full processing
until both inputs complete execution. Once finished, the resulting gesture and speech inputs are validated and
the pair is then sent to the Execution Monitor. This feature supports redundant gesture and speech input from
the user (e.g. pointing while issuing navigate command with speech). If the gesture and speech outputs are
equivalent, only the speech text is shared.

The Execution Monitor determines if a given command should be sent to the robot and what mechanism to
use for conversion from text to a tactical behavior specification (TBS) message the robot understands (sent via
the command and control (C2) interface). For example, if the robot is already in a ”pause/hold” state, and a
”pause” command is given, then no further action is required and the input is ignored. The Execution Monitor,
using the robot’s world model and state information, therefore determines when it is valid to send new commands
to the robot and ensures command procedures the robot supports are followed. For conversion of user input to
a TBS, the Execution Monitor first determines if it is an Atomic Command or natural language. An Atomic
Command represents an execution state transition (i.e. pause, resume, abort) or basic movement operation
(i.e. forward, backward, left, right, rotate left, rotate right). Due to the simple nature of Atomic Commands, a
specialized handler (Figure 2) generated the corresponding TBS. A Natural Language Understanding component
converted all other text to a TBS.

2.4 Natural Language Understanding (NLU)

The task of translating natural language commands into the TBS lexicon can be viewed as a probabilistic
grounding problem that involves inferring a mapping between linguistic elements from the command and their
corresponding TBS clause constituents. Many methods used by robots for natural language understanding,
such as the Generalized Grounding Graph,20 exhibit complexity that is proportional to the number of unique
groundings for a phrase. Thus, most methods do not scale to structured languages of the size that we consider.
The Distributed Correspondence Graph (DCG)21 improves the tractability of probabilistic inference by assum-
ing conditional independence across constituents (e.g., objects, constraints) of a grounding, thereby improving
scalability with the number of constituents. The more recent Hierarchical Distributed Correspondence Graph
(HDCG)22 further improves the efficiency of inference by searching over a pair of graphical models to find phys-
ical meaning of an expression. The first model considers the set of rules that govern the structure of the second



model that is used to ground the utterance. The rules inferred according to the first model are then used to
construct a compact representation of the grounding model that allows for efficient inference. The MMI used the
HDCG for translating natural language into TBS instructions for the experiments described in Section 3. The
symbolic representation in the first model consisted of 44 constituents per phrase that were used to represent
the rules for permitting object, region, action, mode, and constraint types in the second model. The symbolic
representation in the second model was composed to up to 2,341,684 constituents that represent all possible
objects, regions, actions, modes, and constraints that could be expressed by this implementation of the TBS. We
observed an average of 4,528 expressed TBS constituents per phrase in the second model over the 43 annotated
natural language instructions in the training set, which produced the 1,320,768 examples that were used to train
the log-linear model in the HDCG.

3. METHOD

The primary objective for the prototype MMI was to demonstrate successful real-time MMC with a robot,
with average total computation time no greater than two seconds. To ensure this ability, each of the primary
components (GR, ASR, NLU, and C2) of the MMI were tested individually with sample data to capture processing
time per component. The robot used for the study was a modified Husky UGV23 from Clearpath Robotics running
the RCTA software architecture.3,24,25 The accuracy of the GR, ASR, and overall ability to successfully execute
HRI the MMI is not reported here as it has been covered in previous publications.?, 4, 12,18

For the GR module processing time for each of eight gestures mapping to Atomic Commands was measured,
with 200 samples per gesture for a total of 1600. The ASR, NLU, and C2 components were tested using a
pre-defined list of speech commands at varying levels of complexity. Each of the speech inputs mapped to a
semantic navigation command. Semantic navigation commands describe a goal location to navigate to, and
may include spatial relation constraints and modifiers related to how the goal should be approached. For the
present study, seven semantic navigation command archetypes were tested, each with increasing complexity. The
simplest semantic navigation command instructs the robot to navigate to an object, while the most complex
does so while driving in a specific mode (e.g. quickly) and using multiple spatial constraints. A full list of the
semantic navigation command archetypes with examples is shown in Table 2. Eight speech commands for each
command archetype were used for a total of 56 inputs. For the ASR the time from end of a speech utterance until
classification completed was measured for each commands ten times. Processing time to convert each command
over ten iterations was also measured for both the NLU and C2 systems.



Table 2. Semantic navigation command archetypes and corresponding examples.

Number Command Archetype Example(s)

1 navigate to the [OBJECT] navigate to the building.

navigate to the traffic barrel.

2 navigate to the [SPATIAL REL] of the [OBJECT] navigate to the front of the traffic bar-
rel.

navigate to the right of the fire hydrant.

3
navigate to the [SPATIAL REL] of the [OBJECT]
[REL DIST] the [OBJECT]

navigate to the front of the traffic barrel
near the building.

navigate to the left of the traffic barrel
near the fire hydrant.

4 navigate [DRIVE MODIFIER] to the
[SPATIAL REL] of the [OBJECT] [SPATIAL REL]
the [OBJECT]

navigate quickly to the front of the traf-
fic barrel near the building.

navigate quickly to the right of the traf-
fic barrel behind the traffic barrel.

5 [SPATIAL REL APPROACH] to the
[SPATIAL REL] of the [OBJECT] and navigate to
the [OBJECT]

stay to the left of the building and nav-
igate to the traffic barrel.

keep to the right of the traffic barrel and
navigate to the fire hydrant.

6 [SPATIAL REL APPROACH] to the
[SPATIAL REL] of the [OBJECT] and navigate to
the [SPATIAL REL] of the [OBJECT]

stay to the left of the building and nav-
igate to the traffic barrel to the left of
the building.

keep to the right of the traffic barrel and
navigate to the fire hydrant behind the
building.

7 [SPATIAL REL APPROACH] to the
[SPATIAL REL] of the [OBJECT] and navigate
[DRIVE MODIFIER] to the [SPATIAL REL] of the
[OBJECT]

stay to the left of the building and nav-
igate quickly to a traffic barrel to the
left of the building.

keep to the left of the traffic barrel and
navigate quickly to a fire hydrant be-
hind the fire hydrant.

OBJECT: building, traffic barrel, fire hydrant, car

SPATIAL REL: front, back, left, right, behind

REL DIST: near

DRIVE MODIFIER: quickly, covertly

SPATIAL REL APPROACH: stay to the, keep to the

4. RESULTS

4.1 Gesture Recognition (GR)

Analyses of gesture recognition processing revealed a median time of 0.0068 milliseconds (Minimum = 0.0056,
Maximum = 0.00587, SD = 0.0016) to convert from raw sensor data to a classified gesture. A repeated measures



ANOVA found no significant differences in processing time between gestures (p >.05). This finding clearly
demonstrates the advantage of a statistical classifier for fast on-the-fly calculations. Classification times for all
gestures are shown in Figure 4.

Figure 4. Median classification time in milliseconds for each over the eight gestures and overall. Error bars represent
standard error.

4.2 Automated Speech Recognition (ASR)

Analyses of ASR processing revealed a median time of 6.5178 milliseconds (Minimum = 2.0046, Maximum =
12.0594, SD = 1.16) to classify speech utterances (regardless of classification accuracy). A repeated measures
ANOVA determined there was no significant difference in classification time between command archetypes (p
>.05). Speech recognition times for each command archetype are shown in Figure 5. Further evaluation of the
accuracy of the Microsoft Speech Platform SDK 11 for ASR can be found in.?, 18

Figure 5. Median classification time in milliseconds for ASR across each command archetype.



4.3 Natural Language Understanding (NLU)

Analyses of NLU processing revealed a median time of 559.90 milliseconds (Minimum = 287.28, Maximum =
1692.01, SD = 275.81) to convert from text to TBS. A repeated measures ANOVA revealed a significant main
effect for command archetype, F (6, 18) = 19.82 for p ≤ .0. As illustrated in Figure 6, a trend in the data shows
as command complexity increases (1 = lowest, 7 highest), so does processing time. Note, for all text inputs
evaluated, a valid and correct TBS was generated.

Figure 6. Median processing time in milliseconds for NLU across each command archetype.

4.4 Command and Control (C2)

Analyses of C2 processing revealed a median time of 2.92 milliseconds (Minimum = 2.33, Maximum = 7.26, SD
= 0.953) to transmit a TBS to and receive a response from the robot over a standard wireless connection. A
repeated measures ANOVA showed no main effect for transmission time and command archetype, (p >.05).

5. DISCUSSION

It is clear from the timing results presented that the integrated MMI is able to operate in real-time with minimal
delay to the user when issuing commands. Combining processing time across analyzed components, times range
from 291.62 ms to 1682.01 ms, with a median of 569.34 ms from start to finish. Through the use of a statistical
classifier, the GR module has the shortest processing time of all the software components. However, the authors
recognize that only 8 gestures were used for the present study, and therefore further testing should be performed
to determine the cost in processing time (and possibly accuracy) with the addition of more gestures. This result
would likely be affected from changes to the underlying classification method, especially one that is able to spot
gesture start and end signals dynamically without the user making a fist. The Microsoft Speech Platform SDK
selected for ASR also showed high performance across all tested speech and command archetypes. Moreover,
it is interesting to note that regardless of the complexity of speech input, processing time was not impacted.
This finding further indicates the maturity of modern ASR technologies and the benefits they have received
from inclusion in consumer products. The NLU software component also showed high performance in terms of
processing ability for real-time use. Although conversion from text to TBS was largest of all tested components, it
is also the most complex and challenging aspect of the integrated MMI. As stated previously, for the current effort
combined pointing gestures with speech were not included. It is possible that with the inclusion of gestures and



additional world model information, TBS grounding could be improved to address situations where it is unclear
what object/point of interest a person is referring to. This enhanced functionality could result in different
processing times for NLU, and should be addressed in future efforts.
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