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Abstract—We consider learning acoustic feature transforma-
tions using an additional view of the data, in this case video of
the speaker’s face. Specifically, we consider a scenario in which
clean audio and video is available at training time, while at test
time only noisy audio is available. We use canonical correla-
tion analysis (CCA) to learn linear projections of the acoustic
observations that have maximum correlation with the video
frames. We provide an initial demonstration of the approach
on a speaker recognition task using data from the VidTIMIT
corpus. The projected features, in combination with baseline
MFCCs, outperform the baseline recognizer in noisy conditions.
The techniques we present are quite general, although here we
apply them to the case of a specific speaker recognition task.
This is the first work of which we are aware in which multiple
views are used to learn an acoustic feature projection at training
time, while using only the acoustics at test time.

I. INTRODUCTION

The extraction of acoustic features useful for a given task —
automatic speech recognition, speaker recognition, and so on
— has received a great deal of attention in speech technology
research. Techniques such as principal components analysis
(PCA) and linear discriminant analysis (LDA) [1], and their
variants, are popular and effective in many settings. However,
they have drawbacks: For example, PCA is highly sensitive to
the scaling of the data, making it unable to distinguish between
signal and noise. LDA and other discriminative transforms,
on the other hand, are much more effective for finding the
important dimensions for the task at hand, but they rely on
labeled data for estimating the transform.

In this paper, we consider an unsupervised approach to
learning an acoustic feature transform. Rather than labels, we
assume that we instead have access to a second “view” of the
data at training time (but not necessarily at test time). This
is often a natural assumption, as we may be able to collect
a great deal of multi-view (e.g., audio-visual) data, while not
necessarily having access to all of their labels nor having both
views at test time. We differentiate this approach from multi-
modal approaches, in which multiple views are available at
both training and test time. In particular, we focus in this paper
on the problem of speaker recognition, with audio and video
available at training time and only audio available at test time.

Why might a second view help in estimating a discrimina-
tive transform? This is a question that has been addressed
thoroughly in the area of multi-view learning. Multi-view

learning assumes that we have multiple (usually two) “views”
of the data, and the goal is to use the relationship between
these views to alleviate the difficulty of a learning problem
of interest [2], [3], [4]. The definition of “views” may be
quite natural, such as audio and video recordings of speech, or
images and associated captions; or they may be quite abstract,
such as random divisions of a feature vector [5]. In this work,
we consider how having two views contributes to the speaker
classification problem. Specifically, we consider the problem
of learning a linear projection of the acoustic data. We explore
the use of canonical correlation analysis (CCA) [6], [7] as a
dimensionality reduction technique.

In many multi-view scenarios, we can assume that sources
of noise in each modality do not affect the other modality.
For example, in speaker classification, the visual noise may
include lighting and pose variation; the corresponding audio
is likely to be unaffected by these, but will be affected by
independent sources such as the background acoustic noise.
When this assumption holds, the information that appears in
both views is likely to be related to the semantic content in
the data (e.g. the speaker identity) and not to the noise. This
provides some intuition for the multi-view approach. Figure 1
shows a graphical model that represents this assumption.

CCA looks for information that appears in both views by
finding those linear projections of each view that are most
correlated with the corresponding projections of the other
view. Using CCA for dimensionality reduction, we only retain
the correlated information between the two views, which hope-
fully captures the information about the class identity while re-
ducing the noise. Some multi-view learning approaches make
stronger assumptions than those of Figure 1; for example, co-
training [2] makes the additional assumption that each view
is “sufficient” for classification, a strong assumption that may
not hold in practice. In addition, co-training simultaneously
learns two classifiers, one for each view. Here we learn only
a feature transform, and are free to use any classifier on the
resulting features.

IT. LEARNING FEATURE TRANSFORMS WITH CANONICAL
CORRELATION ANALYSIS

Given a data set of paired vectors

{(xlay1)7“'7(xn7yn)}aX = {mi}7y = {yi}v CCA [6]7
[7] finds pairs of directions vy, wy, 1 < k < M such that the



O class
O @,

Fig. 1. A graphical model representing a two-view setting in which the
two (observed) views X and Y are independent given the (hidden) class of
interest.

projections of X and Y onto those directions, respectively
— the canonical variables v,?X and wkTY — are maximally
correlated. The first pair of directions is given by

{vi,w1} = argmax corr(v? X, w?Y) (1
e
= argmax v oyt 2)
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where C, is the cross-covariance matrix between X and
Y (ie., the (¢,7) entry of Cyy is cov(x;, y;)) and Chg, Cyy
are the auto-covariance matrices of X and Y. Subsequent
direction vectors {vy,wg},k > 1, maximize the same cor-
relation, subject to the constraint that the resulting projected
variables vaX , ng are also uncorrelated with all previous
ones, {v! X, wl'Y|j < k}.

It is straightforward to show [7] that the canonical directions
can be found as the solution of an eigenvalue problem. In
particular, the vy are eigenvectors of C,,!Cy,C, !Cy, and
the wy are eigenvectors of C, 'Cy,C; 'Cy,. Only one of
the eigenvector problems needs be solved: Given vy, wi =
Cy_yl Cyzvi. Therefore, the problem we solve is

Cril CayCpy/ Cyav = N0 3)
w X C';ylcymv 4)

where the top eigenvectors v, w; corresponding to the largest
A are the most highly correlated ones across the views, and
the values of )\ are the correlations between the projections.
To reduce dimensionality, we keep the top eigenvectors corre-
sponding to the most correlated projections.

Because of its reliance on correlation, rather than or-
thogonality of the direction vectors, CCA is affine-invariant
(unlike, for example, principal components analysis). It can
be shown that under the multi-view assumption, we are able
to (approximately) find the low-dimensional subspace spanned
by the means of the classes in each view [8]. This subspace
is important, because, when the data is projected onto this
subspace, the means of the classes are well-separated, yet the
typical distance between points from the same distribution is
smaller than in the original space.

In practice, we also add a regularizing term of 7,1 to C,,
and v,I to Cy, (where 7,,, are tuned on held-out data),

as done in prior work [3]. The regularization ensures that the
matrices are invertible, as well as smoothing out some of the
spurious correlations in the data (i.e., directions that appear
correlated in the data due to chance variation in the sample
rather than due to the class identity).

In addition, it is clear that there may be multiple hidden
variables, other than the class of interest, that may account
for correlations between the two views. In our case, the views
are audio and corresponding face video of speakers, and the
hidden variables may include the (desired) speaker identity
as well as the (undesired) phonetic state, emotional state,
and so on. In our experiments, we alleviate this problem by
randomizing the vectors in one of the views for each speaker,
so that the only consistent connection between the views is
(hopefully) the speaker identity. This issue, however, requires
further study.

We think of each view as providing a sample of the same
class, plus (high-dimensional) additive noise in each view.
We retain only the top M directions, thus using CCA as a
dimensionality reduction. It is easy to show that in the resulting
subspace found by CCA, the noise covariance is reduced
relative to the signal covariance. As mentioned previously, we
assume that the two views are independent given the hidden
class variables; if the noise is also independent in the two
views, then the correlated dimensions must correspond to some
aspect of the hidden class.'

Figures 2 and 3 motivate the usefulness of projections
learned using CCA, using a (very simplistic) simulated exam-
ple. In each view, there is clearly a single “good” dimension
along which classification should be done. It would be difficult
to find this direction given one (unlabeled) view alone. PCA
would of course find the direction orthogonal to the desired
one.”? If we were to train a typical speaker recognition system
using diagonal Gaussians, this would also be a poor fit to the
data. However, the two views are correlated given the class,
in such a way that the dimension that is correlated across
views is also the correct dimension for classification in each
of the views. Figure 3 shows the result of performing CCA
on the simulated data and projecting to the first dimension.
The projected data is now easy to classify using a single one-
dimensional Gaussian in either view.

Note that CCA, like many other multi-view learning meth-
ods, provides two projections, one for each view, and is
agnostic as to which view is used at test time. In our case,
we are interested in improving the performance of a classifier
using acoustic data. However, we could just as well use this
approach to improve classification in the other (visual) view.

CCA has been used in previous work on audio-visual
synchronization and speaker recognition [9], [10], but to our
knowledge, only in the context of multi-modal tasks where
both views are available at test time. CCA has also been

'In fact, we are slightly abusing the term “independent” as it is intuitive to
think about the dependence or independence of the views; however, we only
assume that the views are uncorrelated given the class.

2Clearly we could “fix” this example to improve the behavior of PCA, but
it is easy to extend this to more challenging cases.



applied to speaker clustering using both audio and video for
projection learning and only one view for clustering [8]; here
we base our experimental setup on this clustering work.

III. EXPERIMENTS

We use 41 speakers from the VidTIMIT database [11],
speaking 10 sentences (about 20 seconds) each, recorded at 25
frames per second in a studio environment with no significant
lighting or pose variation. The sentences are drawn from
the TIMIT database [12]. The task is speaker identification,
i.e. a 41-way classification task. We use a standard mixture-
of-Gaussians approach [13]: We train a mixture of diagonal
Gaussians for each speaker, and at test time we hypothesize
the speaker whose model has the highest likelihood on the
current utterance, where the utterance likelihood is taken to
be the product of the frame likelihoods.

The baseline audio features are 12-dimensional mel fre-
quency cepstral coefficients (MFCCs) and their derivatives.
We also extract a larger feature vector, which we then project
using CCA. This larger vector consists of MFCCs and their
derivatives and double derivatives, computed every 10ms over
a 20ms window, and finally concatenated over a window of
440ms centered on the current frame (i.e. corresponding to
a total of 11 video frames), for a total of 1584 dimensions.
Note that it may seem that the CCA-based approach is given
a unfair advantage, as it uses a larger number of raw features.
However, the baseline performance is not improved by simply
adding more of these raw features without the CCA projection
step. The video features are pixels of the face region extracted
from each image (2394 dimensions).

We use a 5-fold cross-validation scheme. For each speaker,
6 sentences are used for training, 2 for tuning, and 2 for final
testing, for a total of 82 utterances for development and 82 for
testing in each fold. The five folds use disjoint development
and test sets. For each fold, we find the parameters that
produce the best performance on the development set. In these
experiments, the tuning parameters are the number of Gaus-
sians in each mixture, the dimensionality of CCA projection,
and the two CCA regularization parameters -y, y,. For final
testing, we re-train on the combined training and development
sets for each fold, using the best parameters found above, and
use the resulting models for final testing.

For each fold, we learn a CCA projection of the training
data. We randomize the vectors of one view for each speaker,
to reduce correlations between the views due to other latent
variables such as the current phoneme. We find that the CCA
features alone do not outperform the baseline MFCC-based
approach (see the Discussion section below). Instead, we
append the CCA features to the baseline MFCCs and use the
combined vectors for speaker recognition.

We learn the CCA projections using clean audio data, while
the speaker recognition is done using noisy data, with white
noise added at OdB or -10dB. This is intended to simulate a
natural scenario in which cooperative speakers provide training

data in a controlled environment, whereas the system may be
deployed in much noisier environments. This setup is still not
entirely natural, of course; see Section IV for discussion of
more natural extensions.

Figure 4 shows the results of our experiments for clean
speech and noisy speech at 0dB and -10dB. For clean speech,
the performance of the baseline and CCA-based features is the
same (the difference between them is statistically insignificant
according to a t-test). For the OdB and -10dB cases, there is
a modest but statistically significant improvement (according
to a t-test; p-value = .04 for the OdB case and .005 for
the -10dB case). The best parameter values differ somewhat
across folds; the chosen number of Gaussians per speaker is
typically between 3 and 9, the CCA dimensionality is usually
5 or 10 (for a total dimensionality of 29 or 34), and the
CCA regularization parameters are usually 10 (note that this
may depend on the variance in the data). Again, note that
the CCA-based approach does not have an advantage due
to the higher dimensionality; the baseline does not improve
when its dimensionality is increased (e.g., by adding double
derivatives of the MFCCs). For completeness, we note that the
performance of the visual classifier is extremely good, with
typically less than 5% error rate, and does not gain from the
use of CCA-based features learned using the audio. This is to
be expected, as the visual data is very clean.
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Fig. 4. Box plots of speaker recognition error rates over the five folds for
clean and noisy speech using baseline MFCC features or CCA-based features
appended to MFCCs.

IV. DISCUSSION

Our experiments show that a multi-view learning approach
using CCA to extract features from speech, with video as the
other view, can improve the performance of a speaker recog-
nition system. In particular, under the assumption that clean
audio and video data is available to learn the CCA projections,
we find modest but statistically significant improvements for
speaker recognition on VidTIMIT data in additive noise at
0dB and -10dB. This is the first work of which we are aware
in which an unsupervised feature transformation is learned
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from multiple views of speech data, while only the audio is
available at test time (unlike multi-modal approaches, in which
it is assumed that the multiple views are available at test time).

There are some clear extensions to this work. First, the
improvements we have seen are not large, and it is somewhat
unsatisfying that the CCA-based features alone do not improve
over MFCCs. One reason may be that there are aspects of the
audio that are relevant to speaker recognition but uncorrelated
with the video, for example information about the rear of
the vocal tract. CCA is only effective to the extent that the
correlated directions in the two views are informative about
the task. A natural extension, besides simply appending the
raw and CCA features, would be a more principled approach
to look for just that acoustic information that is not included
in the CCA features.

Another limitation of our setup is the assumption of a linear
relationship between the audio and video. In this work, we are
essentially estimating each view from the other using a linear
mapping. This is unlikely to be a good assumption, and we

View 2

10 15 20

Scatter plots of simulated two-view data, with two dimensions in each view. Red and blue points correspond to different classes, e.g. speakers.

View 2, projected to 1st CCA dim
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Histogram of each view in Figure 2 projected onto the first CCA dimension.

are currently exploring non-linear extensions such as kernel
CCA [7].

The setup in these experiments is, of course, somewhat
contrived and more experiments are needed for a fuller com-
parison against approaches for noise robustness. We have
made the natural assumption that clean data is available at
training time but not at test time. However, we are using an
unsupervised learning approach, but using the same (labeled)
data for both the projection learning and the model training.
A more natural scenario is one where the projection may be
learned on arbitrary data, collected not necessarily from the
same speakers we will eventually test on, and the labeled data
for model training may be a separate (perhaps smaller) set. The
key to this approach is indeed that it is unsupervised: While
for our data we may have been able to learn a better transform
using a supervised approach, the multi-view approach allows
us to use a potentially larger, unlabeled data set. We therefore
would like to extend our work to larger data sets that allow
such experiments. For this initial work, we have chosen the



small VidTIMIT set because of its clean video data.

Another natural setting is one in which some labeled data
is used in addition to the unlabeled data; this suggests extend-
ing the approach to one combining unsupervised transforms
learned with CCA with discriminative transforms using labels
(e.g., as in [14]).
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