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Abstract—Modern automatic speech recognition systems
handle large vocabularies of words, making it infeasible to
collect enough repetitions of each word to train individual
word models. Instead, large-vocabulary recognizers rep-
resent each word in terms of sub-word units. Typically
the sub-word unit is the phone, a basic speech sound
such as a single consonant or vowel. Each word is then
represented as a sequence, or several alternative sequences,
of phones specified in a pronunciation dictionary. Other
choices of sub-word units have been studied as well.
The choice of sub-word units, and the way in which the
recognizer represents words in terms of combinations of
those units, is the problem of sub-word modeling. Different
sub-word models may be preferable in different settings,
such as high-variability conversational speech, high-noise
conditions, low-resource settings, or multilingual speech
recognition. This article reviews past, present, and emerg-
ing approaches to sub-word modeling. In order to make
clean comparisons between many approaches, the review
uses the unifying language of graphical models.

I. INTRODUCTION

Automatic speech recognition has enjoyed decades
of progress, including the successful introduction of
commercial voice-based services. However, there are still
unsettled questions in the speech recognition research
community, and one of these is how to model the internal
structure of words. The main questions are what are the
basic units that should be modeled? and how should the
structure over these units be modeled, parameterized,
and trained? This article gives an overview of poten-
tial answers to these questions, including a historical
overview, a description of the current state of this re-
search area, and presentation of emerging techniques that
may affect the future state of the art.

Throughout the article, we assume that the task of
interest is word recognition. That is, given an acoustic
recording of a sequence of one or more spoken words,
the task is to infer the word(s). We implicitly assume
that the language is known but not necessarily that the
speaker identity is known (i.e., we consider speaker-
independent recognition). We begin in this section by
setting the stage: why sub-word units are needed, what
the most common sub-word models are, and why alter-
natives have been considered.

A. Why sub-word models?

Why should words be broken up into smaller units
at all? The word recognition problem could be framed
as a comparison between a test pattern—typically a
spectral representation of an input waveform—and stored
reference patterns for words. In order to account for
variations in production, we should have many stored
examples of each word.

For any recognition task with a large vocabulary,
the whole-word approach is impractical. Words are dis-
tributed approximately according to Zipf’s law, i.e. the
frequency of a word is roughly inversely proportional
to its rank in the frequency table. In the 3-million-word
Switchboard-1 Corpus of telephone conversations, the
43 most frequent word types account for half of the
word tokens, while the other half are distributed across
about 33,000 word types. Some words—many names,
new coinages, words related to current events—may not
occur at all in any finite corpus of recorded speech.
Unfortunately, these words are often relevant in practice.

This observation motivates the use of sub-word units
that occur often in reasonably sized speech corpora. If we
have no recordings of, say, the word “batrachophagous”,
we may hypothesize that it starts with the same con-
sonant sound as “bar”, continues with the same vowel
sound as in “hat”, and so on. If we have sufficiently
many recordings of these individual sounds, so-called
phones, perhaps we can build a model of the word out
of models of the phones, and collect pronunciations in a
phonetic dictionary. Alternatively, we could note that the
word starts with the same entire first syllable as “batter”
does, ends with the same syllable as “analogous”, and
so on. If we have sufficiently many recordings of all
possible syllables, we can then build word models by
concatenating syllable models.

Phones and syllables, then, are potential types of
sub-word units. Additional alternatives are sub-phonetic
features (“batrachophagous” starts with a stop conso-
nant, which is also voiced and produced at the lips);
graphemes (“batrachophagous” starts with the same
two letters as “bar”, so it might also start with simi-
lar sounds); and automatically learned sub-word units,
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which are units corresponding to acoustic segments that
have been consistently observed in training data.

Good sub-word units should be (1) trainable; i.e., they
should be sufficiently frequent in typical corpora, (2)
generalizable; i.e., they should be able to represent pre-
viously unseen words during testing, and (3) invariant;
i.e., they should be robust to changes in environment
and context. Choosing the best type of unit, and the best
associated model of word structure, is a critical decision
point in the speech recognition problem: Virtually all
other components and algorithms in speech recognition
presuppose the existence of a fixed set of units.

B. Phones and context-dependent phones

The most commonly used sub-word units are phones.1

There are typically 30-80 phones per language. In to-
day’s recognizers, words are usually represented as one
or more phone sequences, often referred to as the “beads-
on-a-string” representation [1], [2]. Common variants
may be listed (“going” → [g ow ih ng], [g ow ih n])
or generated by rule (“-ing” → [ih ng], [ih n]).2

The same phone may be realized differently in dif-
ferent contexts, due to coarticulation, stress, and other
factors. For example, [k] is usually articulated with the
tongue farther forward in the word “keep” and farther
back in the word “coop”, resulting in very different
signals. To take such effects into account, each phone in
each relevant context can be considered a separate unit.
This is the context-dependent phone unit used in most
speech recognizers [3]. Automatically learned decision
trees are used to partition the data into roughly homo-
geneous acoustic units, usually based on the preceding
and following phones; depending on the context window
size, the resulting units are called triphones (for a ±1
phone context), quinphones (for ±2 phones), and so on.
Each context-dependent unit is typically represented by
a hidden Markov model (HMM) with Gaussian mixture
observation densities, which account for the remaining
acoustic variation among different instances of the same
unit. For further details about the architecture of standard
HMM-based recognizers, see [4].

1Linguists distinguish phones—acoustic realizations of speech
sounds—from phonemes—abstract sound units, each possibly corre-
sponding to multiple phones, such that a change in a single phoneme
can change a word’s identity. In speech recognition research, these
terms are often used interchangeably, and recognition dictionaries
often include a mix of phones and phonemes. We will use the
term “phone” throughout as it is more typical in speech recognition,
although we will distinguish between canonical phones (found in
a dictionary) and surface phones (that are observed). The entire
discussion applies similarly to phones and phonemes.

2We use the ARPA phonetic alphabet for English examples.

C. Challenges for sub-word models

Given the above, why is sub-word modeling not a
“closed case”? Two main challenges dominate the dis-
cussion: pronunciation variability and data sparseness.

a) Pronunciation variability: Spoken words, espe-
cially in conversational speech, are often pronounced
differently from their dictionary pronunciations (also
referred to as canonical pronunciations or baseforms) [5],
[6]. This variability is the result of many factors—the
degree of formality of the situation, the familiarity of
speakers with their conversation partners and relative
seniority, the (presumed) language competency of the
listener, and the background noise [7]—and is one of the
main challenges facing speech recognition [8]. Context-
dependent phones and Gaussian mixtures cover a great
deal of the variation, in particular substitutions of one
sound for another; but some common pronunciation
phenomena, such as apparent deletions of sounds, are
poorly accounted for [9]. The performance of speech
recognizers degrades sharply on conversational speech
relative to read speech, even when exactly the same word
sequences are spoken by the same speakers in the same
acoustic environment; in other words, conversational
pronunciation style alone is responsible for large perfor-
mance losses [5]. Even within a single sentence, different
words may be pronounced more or less canonically, and
the ones that are pronounced non-canonically tend to be
misrecognized more often [10].

Perhaps more surprisingly, “hyper-clear,” or over-
emphasized, speech degrades recognition performance
as well [11], although it can improve intelligibility for
humans [12]. That speech recognition is worse for both
conversational and “hyper-clear” speech suggests that the
representations used in today’s recognizers may still be
flawed, despite impressive progress made over the years.

Figure 1 shows an example of the types of variation
seen in the Switchboard conversational speech corpus,
as transcribed by expert phonetic transcribers [13]. Other
examples from the same corpus include the word “prob-
ably” with such pronunciations as [p r aa b iy], [p r ay],
and [p r aw l uh], and “everybody” with pronunciations
such as [eh v er b ah d iy], [eh b ah iy], and [eh r uw
ay]. Overall, fewer than half of the word tokens in this
corpus are pronounced canonically.

This variability is not language-specific. In German,
“haben wir” (“we have”) is canonically pronounced
[h a: b @ n v i:6] (using the SAMPA international
transcription alphabet), but can be pronounced as [h a m
a] or [h a m v a] in colloquial speech. Similar examples
occur in French; e.g., cinéma: [s i n e m a] → [s i n m
a], c’est pas: [s E p a] → [s p a] [14].
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little

l ih

 

dx

 

el (“liddle”)

l uh dx

 

el (“luddle”)

l ax el (“lull”)

The word “little”

 

has many pronunciations in 

 

the Switchboard corpus, including these top 

 

three.  How do different pronunciation 

 

modeling techniques handle this variation?

little

l ih

 

t el

“liddle”

“luddle”

“lull”

A standard pronunciation dictionary

 

usually

 

has one entry per word; the acoustic models

 

for [ih] and [t] are assumed to handle the
pronunciation variation. (See Fig. 2(a).)

l ih

 

dx

 

el “liddle”
Using multiple pronunciations per word

 

can

 

reduce the variability handled by the acoustic 

 

model; these pronunciations can be learned by 

 

observing  data or using phonological rules for 

 

general pronunciation patterns across words. 

 

(See Sec. II‐A, Sec. III‐B, and Fig. 2(b).)

little

“luddle”

“lull”

l ax dx

 

el

l ax el

Automatically learned sub‐word units

 

can be 

 

used to create very flexible pronunciation 

 

models that make no assumption about the 

 

linguistic meaning of the units.  (See Sec. II‐C.)

u6 u32 u2

little

u6 u14 u2

u6 u17 u4

little

l ih

 

t el “liddle”

“luddle”

“lull”

Acoustic pronunciation modeling

 

steers the 

 

acoustic models to account for pronunciation 

 

variation.  In this example of state‐level 

 

pronunciation modeling, different Gaussian 

 

mixture components account for the variants 

 

of [ih] and [t], color coded in the pronunciation 

 

gloss. (See Sec. II‐C.)

little

l ih

 

t el
Sub‐phonetic feature models

 

decompose 

 

phones into vectors of attributes such as 

 

articulatory

 

features.  Variation is described as 

 

changes in parts of the vectors or asynch‐

 

ronous

 

transitions in different vector elements. 

 

(See Sec. II‐D, Sec. III‐C, and Fig. 3.)

voiced
nasal
…

“liddle”

“luddle”

“lull”

“liddle”

“luddle”

“lull”

Fig. 1. An example of pronunciation variation in conversational
speech, a standard dictionary representation, and four alternative
approaches to describing this variation, serving as an informal de-
scription of techniques described in Sections II–III.

However, pronunciation changes do not necessarily
occur at the level of entire phones. Instead, changes
often occur at a sub-phonetic level, such as devoicing
of voiced consonants, spreading of rounding to phones
near a rounded phone, or nasalization of vowels near
nasal consonants.

b) Data sparseness: Another challenge is the num-
ber of sub-word units relative to the amount of training
data available. For example, there are tens of thou-
sands of triphone units that occur in a typical language.
This makes it difficult to train conventional models for
languages or dialects in which few resources (audio
data, dictionaries) are available. A recent interest in
open-vocabulary and spoken term detection systems,
in which the vocabulary (or even the precise dialect
or language) may not be known in advance, creates
an additional incentive to investigate models based on
units that are more language-independent and robust to
data sparseness. Such considerations have also motivated
approaches using smaller inventories of “universal” sub-
phonetic units that can be combined in many ways to

form the sounds of the world’s languages and dialects.
These two challenges—pronunciation variability and

data sparseness—contribute to keeping speech recogni-
tion from being used for unrestricted applications, such
as court room transcription, closed captioning, free-style
dialogue systems, and quickly portable cross-language
applications. For example, large-vocabulary English con-
versational telephone speech is currently recognized at
roughly 20% word error rate; this is sufficient for some
tasks, like searching for content words, but does not
make for a reliable, readable transcript.

Besides these two challenges, some researchers feel
that speech recognition in general would be improved
by using sub-word models that are more faithful to
knowledge from linguistics and speech science. This
consideration has also motivated some of the approaches
described here, although we focus on the motivations
presented by the pronunciation variation and data chal-
lenges, and will not comment on the fidelity of the
approaches to human speech processing.

II. HISTORICAL REVIEW

Since the first large-vocabulary speech recognition
systems of the mid-1970s, the predominant type of sub-
word model has been the representation of a word as
one or more strings of phones [15]. Throughout the
intervening years, however, a variety of alternative sub-
word models have been studied in parallel, with the basic
units including syllables [16], [17], acoustically defined
units [18], [19], graphemes [20], and sub-phonetic fea-
tures [21], [22], [23], [24], [25], [26]. Figure 1 serves
as an informal summary of some of the main sub-word
modeling approaches described in this article.

A. Dictionary expansion

In the 1990s and early 2000s, interest in conversa-
tional speech recognition led to several studies on the
properties of the conversational style and its effects on
recognition performance [5], [10], [7], [13], [9], [2]. This
led to a great deal of activity on modeling pronunciation
variation, including two workshops sponsored by the
International Speech Communication Association [27],
[28]. The majority (but by no means all) of the proposed
approaches during this period kept the phone as the basic
sub-word unit, and focused on ways of predicting the
possible phonetic sequences for any given word using
phonological rules or other means [29], [30], [31], [32],
[33], [7], [34], [10].

In the example of Figure 1, the first vowel of the word
“little” exhibits variation from the expected [ih] phone to
the sounds [ax] and [uh] that are produced farther back
in the mouth. In addition, in American English, the “t”



SIGNAL PROCESSING MAGAZINE, VOL. XX, NO. YY, ZZZZ 4

sound in this context is usually realized as the flap [dx]
(with the tongue briefly touching the roof of the mouth),
but it can also be deleted.

One way to account for such variation is to include
all observed variants in the pronunciation dictionary,
perhaps along with the probability of seeing each variant.
A large amount of work in sub-word modeling has
involved such expansion of the baseform dictionary with
additional pronunciations [31], [7], [35]. However, when
pronunciation variants are learned separately for each
word, frequently observed words may develop a rich
inventory of variants, while infrequent words may be
poorly modeled: Unless some capability for generaliza-
tion is built in, learning new variants for little will not
inform about variants for whittle and spittle.

One common approach to increase generalization is
to model pronunciation changes as transformations from
one phone sequence (a canonical pronunciation) to an-
other (an observed surface pronunciation) via phonolog-
ical rules. A phonological rule can be represented as a
transduction from a string of phones X to a string of
phones Y when surrounded by a particular context. For
example, the flapping of [t] in little could be generated
by the rule { ih t ax→ dx } (read “[t] can be realized as a
flap between the vowels [ih] and [ax]”). Such rules can
be specified manually from linguistic knowledge [33]
or learned automatically, typically using decision trees
[30], [10]. Once a set of rules is specified or learned,
it can be used to expand a dictionary to form a single
new dictionary (a static expansion) or to expand the
dictionary dynamically during recognition in response to
unpredictable context such as the speaking rate [10].

Learning the distribution over phonetic baseforms or
rules requires phonetically labeled training data. This can
be obtained from manual transcriptions [30] or using
a phonetic recognizer. The learning has typically been
done by maximizing the model likelihood over the train-
ing data [31], although in some work a discriminative
objective is optimized instead [35], [32].

B. Impact of phonetic dictionary expansion

Phonetic dictionary expansion has produced improve-
ments in some systems [30], [10], [33]. However, the
improvements have been more modest than hoped, con-
sidering the very large difference in performance on
read and conversational renditions of the same word
sequences [5]. One issue is the tradeoff between cover-
age and confusability. As pronunciations are added to
a dictionary, coverage of alternative pronunciations is
improved, while at the same time, words become more
confusable due to increasing overlap in their allowed
pronunciations. Several researchers have tried to quantify

Reference Type of error Error rate (%)
ERR 14.2

Canonical DEL 2.4
SUB 11.8
ERR 20.7

Non-canonical DEL 4.2
SUB 16.5

None INS 10.8
All ERR 27.2

TABLE I
RECOGNITION RESULTS (ERROR PERCENTAGE IS THE SUM OF
DELETIONS AND SUBSTITUTIONS) FOR WORDS PRONOUNCED
CANONICALLY AND NON-CANONICALLY. BOTTOM TWO ROWS:

OVERALL INSERTION RATES AND OVERALL WORD ERROR RATES.

confusability [36], [37], to limit the amount of variation
to just the minimum needed [38], or to use discriminative
training to eliminate error-causing confusions [35], but
balancing confusability and coverage remains an active
area of research.

The current mainstream approach—that is, the ap-
proach typically used in state-of-the-art systems in
benchmark competitions—uses a phonetic baseform dic-
tionary with a single pronunciation for most words, a
small number of variants for remaining, frequent words.
Dictionaries are typically manually generated, but can
also be generated in a data-driven way [39], [40].

To show the influence that pronunciation variation
still has on today’s systems, we analyze the hypotheses
of a state-of-the-art conversational speech recognizer,
similarly to earlier experiments described in [10]. Ta-
ble I shows the results of testing the recognizer on
phonetically transcribed data from the Switchboard Tran-
scription Project [13].3 Approximately 60% of the word
tokens in the test set were manually labeled as having
a non-canonical pronunciation. There is approximately
a 50% increase in errors when a word is pronounced
non-canonically, similarly to earlier findings [10].

We now continue our historical review with some
alternatives to phonetic dictionary expansion.

C. Acoustics-based models

Investigations of the acoustic realizations of phones
labeled by linguists as non-canonical have shown that
the acoustics are often closer to the canonical phone than

3Some technical details: The recognizer is speaker-independent,
without adaptation but with discriminative training using a maximum
mutual information criterion on a standard 350-hour training set [41],
using a trigram language model and a vocabulary of 50,000 words.
The dictionary contains multiple pronunciations for a subset of the
words, for a total of 95,000 variants, derived from the CMU dic-
tionary using knowledge-based phonological rules. Acoustic model
training uses Viterbi alignment of multiple pronunciation variants.
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to the putative transcribed phone [42], so a replacement
of an entire phone in the dictionary may be an inaccu-
rate representation of the change. Given this continuous
nature of pronunciation variation, combined with the lim-
ited improvements seen from dictionary expansion, some
proposed that the handling of pronunciation variation
may be better done using acoustically defined units [43],
[18] or by modifying the acoustic model of a phone-
based recognizer [44], [45].

In acoustically defined sub-word unit models, an al-
ternative to the phone is sought that better describes
speech sound segments. One typical approach [43],
[18] is to first segment observed word tokens into a
number of coherent regions, then cluster these regions
to produce a set of units that generalize across the
words in the vocabulary (like the numbered units, e.g.
u6, in Figure 1). The appeal of such an approach is
that, since the pronunciations are derived directly from
audio, it should be better tuned to the task than a
dictionary model. However, there are a few challenges
as well: Deriving representations for words not seen
in training is difficult since the usual prior mapping
from words to sounds is unavailable; building context-
dependent acoustic models is also problematic, as the
typical decision tree clustering algorithms ask questions
about the linguistic nature of neighboring units, which is
unavailable here. Another active research direction is the
use of alternative modeling techniques that do not follow
the segment-then-cluster approach [46], [19], [47].

Acoustic pronunciation modeling, in contrast, uses
modified acoustic models combined with a basic phone-
based dictionary. One such strategy is state-level pro-
nunciation modeling [45]. This technique starts with
standard mixture of Gaussian observation models trained
using a canonical pronunciation dictionary, and then
combines Gaussians from phones that are found to be
frequent variants of each other in phonetic transcriptions.
For example, in Figure 1, the pronunciation of the vowel
in little may borrow Gaussians from both the [ih] model
and the [ax] model seen in one of the variants.

A similar intuition led to the hidden model sequence
HMM (HMS-HMM) approach proposed by Hain [48],
[49], in which each phone is represented by a mixture
of HMM state sequences corresponding to different vari-
ants. Both state-level pronunciation modeling and hidden
model sequences, then, account for the continuous nature
of pronunciation variation by making “soft” decisions
about phone changes. Hain also proposed a procedure for
iteratively collapsing multiple dictionary pronunciations
to a single pronunciation per word, based on observed
frequencies in training data, and extrapolating to unseen
words, which produced the same performance on conver-

sational speech as the original multi-pronunciation dic-
tionaries [44], [49]. Such a procedure tunes lexical rep-
resentations to the acoustic models that are accounting
for some of the phonetic variation. Nevertheless, most
state-of-the art systems use dictionaries with multiple
variants for frequent words with variable pronunciation,
rather than tuning a single-pronunciation dictionary to a
specific data set and acoustic model.

D. Sub-phonetic feature models

One of the primary differences between explicit
phone-based models and acoustics-based models is the
granularity: Phone-based models describe variation as
discrete changes in phonetic symbols, but may not
capture subtle acoustic variation; acoustics-based models
give a fine-grained, continuous view of pronunciation
variation, but may miss opportunities for generalization.
A middle ground is to factor the phonetic space into
sub-phonetic feature units. Typical sub-phonetic features
are articulatory features, which may be binary or multi-
valued and characterize in some way the configuration
of the vocal tract.4 Roughly 80% of phonetic substi-
tutions of consonants in the Switchboard Transcription
Project data consist of a single articulatory feature
change [10]. In addition, effects such as nasalization,
rounding, and stop consonant epenthesis can be the result
of asynchrony between articulatory trajectories [50]. A
factored representation may allow for a more precise
and parsimonious explanation of these phenomena. In
addition, such a representation may allow for reuse of
data across languages that share sub-phonetic features
but not phone sets, thus helping in multilingual or low-
resource language settings [51].5

Two general approaches have been used for sub-
phonetic modeling in speech recognition. The first is
what we refer to as factored observation models [26],
[53], [25], [54], where a standard phonetic dictionary
is used, but the acoustic model consists of a product
of distributions or scores, one per sub-phonetic feature,
and possibly also a standard phonetic acoustic model.
Factored observation models address the challenge of
robustness in the face of data sparseness, and may also
be more robust to noise [26]. They do not, however,

4We use the term “articulatory features” to refer to both discretized
positions of speech articulators and more perception-based phonolog-
ical features such as manner and place of articulation. These terms
are sometimes distinguished, but not consistently so in the speech
recognition literature. For this reason we use a single term for both.

5Earlier, related work used state-based tying and multilingual
phone sets to learn which phones to share and which phones to
separate between languages automatically from data [52] in low-
resource and multilingual settings.
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explicitly account for changes in articulatory feature
values or asynchrony. To address this, some have pro-
posed representing the dictionary explicitly in terms
of sub-phonetic features. In this approach, sometimes
inspired by the theory of articulatory phonology [55],
many effects in pronunciation variation are described as
the result of articulatory asynchrony and/or individual
feature changes. We refer to this as a factored-state
approach because the hidden phonetic state is factored
into multiple streams.

One of the first series of investigations into a factored-
state approach was by Deng and colleagues [21], [56],
[57], using HMMs similar to those of standard phone-
based models, but with each state corresponding to a
vector of articulatory feature values. All possible value
combinations are possible states, but transitions are con-
strained to allow only a certain amount of asynchrony.
More recently, a more general approach to articulatory
pronunciation modeling has been formulated, in which
graphical models represent both articulatory asynchrony
and deviations from articulatory targets [58], [59], [60].
In factored models using articulatory features, it is possi-
ble to use articulatory inversion as a form of observation
modeling [61], or to use generative observation mod-
els [21], [59] (see, e.g., [24] for a review of techniques).
Here, however, we restrict our attention to the mapping
between words and sub-word units.

E. Conditional models

In the approaches described thus far, each word con-
sists of some combination of sub-word units that must be
present. Another recent line of work involves conditional
models (also referred to as direct models [62]), which
changes the nature of the relationship between words
and sub-word units. In this approach, sub-word repre-
sentations are thought of as evidence of the presence
of the word [63], [64], [65]. In contrast to generative
models like HMMs, conditional models directly repre-
sent posterior probabilities, or more generally scores, of
the unknown labels (words, states) given observations
(acoustics) and are trained by optimizing criteria more
closely related to the prediction task. Such approaches
have been developed as extensions of conditional models
for phonetic recognition [66], [67], but they serve as new
forms of sub-word modeling in their own right (although
they are not necessarily framed in this way). The con-
ditional approach allows for multiple, overlapping sub-
word representations that can be combined in ways that
are difficult to do in traditional HMM-based models [65].

III. SUB-WORD MODELS AS GRAPHICAL MODELS

Many of the approaches reviewed above fit into the
standard speech recognition framework of HMM-based

modeling, but some do not. The development of some
of the sub-phonetic and conditional models discussed
above has been facilitated by the rise of graphical model
techniques, which generalize HMMs and other sequence
models. Graphical models have been gaining popularity
in speech recognition research since the late 1990s,
when dynamic Bayesian networks (DBNs) were first
used to represent HMM-based speech recognizers and
then to introduce additional structure [68], [69], [70]. In
order to easily compare various approaches, this section
unifies much of the prior and current work on sub-word
modeling in a graphical model representation. We first
define graphical models, and then formulate several types
of sub-word models in this representation.

A. Brief introduction to graphical models

A graphical model [71] is a representation of a
probability distribution over N variables X1, . . . , XN

via a graph, in which each node is associated with a
variable Xi. The graph encodes the factorization of the
distribution as a product of functions, each of which
depends on only a subset of the variables. Graphical
models have become a lingua franca of machine learn-
ing and artificial intelligence [72], because they can
parsimoniously represent complex models and because
there are uniform algorithms for doing computations
with large classes of graphical models. The main type
of computation is inference—“given the values of the
variables in set A, what is the distribution (or most
probable values) of the variables in set B?”—which is
required for both testing (doing prediction with) and
training (learning parameters for) a graphical model.

In directed graphical models, or Bayesian networks
(BNs), the joint distribution is given by the product of
the “local” conditional distributions of each variable Xi

given its parents in the graph pa(Xi):

p(x1, . . . , xN ) =
N∏

i=1

p(xi|pa(xi)). (1)

We use lower-case letters to denote the values of random
variables, e.g. x is a value of X . A dynamic Bayesian
network (DBN) consists of repeating sub-graphs, or
frames. DBNs are appropriate for modeling stochastic
processes over time, such as speech (where the frame
may correspond to the usual 10ms frame of speech). An
HMM is a special case of a DBN in which each frame
consists of a state variable and an observation variable.

Conditional random fields (CRFs) [73] are undirected
models of a conditional distribution p(Q|O). Given the
observed variables O = (O1, . . . , OL), the joint distri-
bution over the hidden variables Q = (Q1, . . . , QM )
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is given by the product of local potential functions
ψk

(
Q{k}, O

)
over cliques of variables Q{k}, k ∈

{1, . . . ,K}:

p(q1, . . . , qM |o) =
1

Z(o)

K∏
k=1

ψk

(
q{k}, o

)
, (2)

where Z(o) is a normalizing constant. The potential
functions are typically assumed to have a log-linear form
ψk

(
q{k}, o

)
= exp

(∑
j θkjfkj

(
q{k}, o

))
, where the

feature functions fkj are fixed and only the weights θkj

are learned.6 This means that the predictor function for
the hidden variables, arg maxq1,...,qM

p(q1, . . . , qM |o),
has the form of a summation over the weighted feature
functions, similarly to other discriminative models like
structured SVMs [74]. A recent variant is segmental
CRFs [65], in which each hidden variable may extend
over a varying number of frames.

We do not address the important problem of effective
and efficient inference for different types of models;
the reader is referred to previous review articles and
texts [70], [72]. The parameters of generative graphical
models can be learned either with the classic expectation-
maximization (EM) algorithm [75] or with discriminative
training algorithms (e.g., [76]). For discriminative mod-
els, a number of learning approaches such as maximum
conditional likelihood (as in CRFs [73]) or large-margin
training (as in structured SVMs [74]) are used.

Directed models are particularly useful when inter-
pretability is important. Undirected models are useful
for combining many different information sources (via
the feature functions).

B. Phone-based models as DBNs

Figure 2 shows several phone-based models repre-
sented as DBNs (although they are not typically im-
plemented as DBNs). Figure 2(a) represents a standard
HMM-based speech recognizer with a single baseform
pronunciation per word. This DBN is simply an encoding
of a typical HMM-based recognizer. Without loss of
generality, we refer to the sub-word variable qt as the
phone state; however, this variable may represent either
a sub-phonetic monophone state ([ih1], [ih2], [ih3]) or a
context-dependent phone (e.g., triphone) state.

The DBN of Figure 2(a) is a complete speech recog-
nizer, except for certain details of the language model.
The sub-word model is that portion that concerns the
mapping between words and phone states. In the remain-
ing models below, we will only present the variables and

6Feature functions are sometimes also referred to as features. We
use the term feature functions throughout to avoid confusion with
sub-phonetic features.

dependencies involved in sub-word modeling; that is, we
will not show the word and observation variables.

The remainder of Figure 2 shows alternative phone-
based sub-word models. Figure 2(b) shows a sub-word
model with multiple pronunciations per word—which
represents, more or less, the mainstream approach—and
Figure 2(c) shows a model in which the multiple pro-
nunciations are generated by applying context-dependent
probabilistic phonological rules represented as decision
trees, which involves adding variables to the DBN cor-
responding to the desired context. In Figure 2(c), the
context variables are deterministic given the sub-word
state (e.g., properties of the previous and next phones).
In general, the context variables may be more complex—
e.g., higher-level context such as word frequency or
speaking rate—which may require different dependen-
cies. The distribution of the context-dependent phone
state variable p(qt|ut, c

1
t , c

2
t , . . .) is typically not learned

jointly with the other parameters, but rather decision
trees are separately learned for predicting the phone dis-
tribution given the context variables [30], [10]. In other
work, rule “firing” probabilities are learned separately
or as part of the complete recognizer [33]. In addition,
the same model structure can describe certain acoustics-
based models; for example, Hain’s HMS-HMM approach
(Section II-C) [48] has the same structure except that the
“surface phone state” is an abstract HMM model state,
and is not shared across canonical phones with similar
surface realizations.

C. Sub-phonetic feature models as DBNs

Figure 3 shows sub-phonetic feature models (see
Sec. II-D) represented as DBNs. Figure 3(a) represents
factored observation models, in which the phone state
variable qt is mapped to multiple feature state variables
qi
t, each of which is associated with a separate obser-

vation distribution p(ot|qi
t) (e.g., Gaussian mixtures as

in [25], [23]) or separate discriminative classifier [26],
[77] for each sub-phonetic feature i, and optionally an
additional standard observation distribution per phone
state p(ot|qt). If classifiers are used, their outputs are ei-
ther scaled to produce scaled likelihoods ∝ p(ot|qi

t) [26]
or used as new observation vectors over which Gaussian
mixture distributions are trained [77]. These distribu-
tions/scaled likelihoods are multiplied to produce the
final observation model.

Figure 3(b) shows a factored-state model, with no
phone state variable at all, based on [60]. Each sub-
phonetic feature follows its own trajectory through the
state sequence of each word. In this case the feature
streams correspond to specific articulators such as the
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depending�on�the�transition�probability�of�the�current�phonetic�state�qt.��To�
the� left� are� depictions� of� the� distributions� of� the� phone� state� and�
observation� vector� variables.� � The� phone� is� given� deterministically� by� the�
current�word� and� sub�word� state.� � The� observation� vector� has� a� Gaussian�
mixture�distribution�conditioned�on�the�phone�state.��

A�model� with� a� multiple�pronunciation� dictionary.� � Word� and� observation�
variables,�and�edges� to/from�them,�have�been�omitted.� �This�model�differs�
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constant� within� a� word.� � To� the� left� is� an� example� distribution� of� the�
pronunciation� variant� variable,� as�well� as� a� table�mapping� from� the�word,�
pronunciation�variant,�and�sub�word�state�variables�to�the�phone�state.

A� sub�word�model�with� context�dependent� phonological� rules.� � This�model�
differentiates�between�the�canonical�phone�in�the�dictionary�and the�surface�
phone� produced,� depending� on� context� variables� such� as� the� next� or�
previous� phone.� � The� distribution� of� the� surface� phone� is� often� modeled�
using�a�decision�tree;�an�example�tree�for�(all�states�of)�the�target�phone�[t]�
is�shown�at�left.

p�
(v

t
=�
v)

0
0.2
0.4
0.6

1 2 3 4

(a)

(b)

(c)

pronunciation�
variant

target�=�[t]

surface��������
phone�state

Fig. 2. Phone-based sub-word models as DBNs. Notation: square/
circular nodes correspond to discrete/continuous variables; shaded
nodes are observed; nodes with thick outlines are deterministic given
their parents. Here and throughout, we omit certain details, such as
the special cases of the initial and final frames, distinctions between
training and decoding models, and precise representation of the
language model (in fact the above is a precise representation of an
isolated-word recognizer). See [70] for more information about DBNs
for speech recognition.

lips, tongue, glottis, and velum. Note that the sub-
word sub-structure for each feature is analogous to the
structure of the phone-based model of Figure 2(c). As in
phone-based models, context-dependent deviations from
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Fig. 3. Sub-word models based on sub-phonetic features.

canonical values can be modeled using decision trees.
Note the similarity between the structure in Figure 2(c)
and the feature-specific substructures in Figure 3(b).
In Figure 3(b), each surface feature value depends on
its canonical target as well as the previous and next
canonical targets, which takes into account the tendency
of articulators to assimilate with their past/future states.
Many additional context variables are possible [60].
Since the features now each have their own sub-word
state variable, they may not proceed through the word
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synchronously. The model probabilistically constrains
the asynchrony between features via the asynchrony
variables. Such models have a fairly complex graphical
structure, but by virtue of factoring the state distribution,
they can have fewer parameters than analogous phone-
based models (Fig. 2) and than factored-state models
represented as HMMs [21], [22].

D. Conditional models

As mentioned in Section II, conditional models are
becoming increasingly popular for representing various
aspects of speech recognition, including sub-word mod-
els. In terms of their graphical model structure, the
models that have been developed thus far are essentially
the undirected equivalents of the models in Figures 2
and 3. The key point in these models is how the feature
functions over cliques of variables are defined.

1) Phone-based CRFs: The most commonly used
conditional models are conditional random fields (CRFs),
defined above in Equation 2. Analogues of the basic
phone-based model of Figure 2(a) have been investigated
extensively for phonetic recognition [66], [67], [54]. A
direct analogue of a single-Gaussian HMM corresponds
to using the Gaussian sufficient statistics (the acoustic
observations and their inner products) as feature func-
tions. If a hidden state variable is also added [66],
[67], the model becomes analogous to a HMM with a
Gaussian mixture acoustic model. The key differences
are the conditional training and the ability to include
additional feature functions.

Different choices of feature functions can give rise to
different types of models; for example, using posteriors
over sub-phonetic feature classes as feature functions
results in a system that is analogous to the factored
observation model of Figure 3(a) [54]. CRF models with
similar structure to the articulatory DBN of Figure 3 have
also recently been introduced [78].

Segmental CRFs (SCRFs) have also been used as a
form of sub-word modeling. For example, in [65], the
authors define SCRF feature functions that correspond to
aligned pairs of expected phone sequences and observed
ones, which is the analogue of context-dependent phono-
logical rules in prior phone-based work (Sec. II-A). They
also use additional new feature functions, such as co-
occurrence (without an explicit alignment) of baseform
phone sequences and surface phone sequences. This
framework allows for a very rich set of feature functions,
since any functions spanning a word unit can be used.
Models of the same form as SCRFs can in principle
be trained with other discriminative criteria and features
functions, as done in [79] with large-margin training and

Approach Result
Decision tree-based
phononological rules
[30] Figure 2(c)

Improvements over baseline dictio-
nary by 1-3% on conversational
speech and broadcast news recogni-
tion.

Dynamic phonological
rules using phonetic,
prosodic, etc. context
[10] Figure 2(c)

Improvements over baseline dictio-
nary by 3-5% on conversational
speech.

Segment-based system
with phonological rules
[33] Figure 2(c)

Improvement over baseline dictio-
nary by 9% on medium-vocabulary
weather query task.

Discriminative selection
of pronunciation
variants [35] Figure 2(b)

Improvement over baseline dictio-
nary by 7% on recognition for voice
search.

Automatically learned
sub-word units [18], [80]
Figure 2(a)

Allows automatically inducing dic-
tionary from data; 3% improve-
ment over phonetic baseline sys-
tem for conversational speech, larger
improvements on small-vocabulary
task.

State-level pronunciation
modeling [42]
Figure 2(a)

Improvement over standard HMMs
by 5% on conversational and read
speech.

Hidden model sequences
[49] Figure 2(a)

Improvement by up to 4% over stan-
dard HMMs on conversational tele-
phone speech.

Factored articulatory
observation model using
multilayer perceptrons
[26] Figure 3(a)

Improvement of ∼5% over unfac-
tored phone-based model in noisy
medium-vocabulary speech recogni-
tion.

Factored articulatory
observation model using
Gaussian mixtures [25],
[11], [51], [23]
Figure 3(a)

Improvements on large-vocabulary
& cross-lingual recognition, hyper-
articulated speech recognition, and
small-vocabulary recognition in
noise by 5-10%.

Factored-state model
using articulatory
features [22] Figure 3(b)

Improvement of ∼25% in combi-
nation with a baseline HMM on
medium-vocabulary isolated words.

Segmental CRFs with
phone-based feature
functions [65]

Improvement of ∼10% over state-of-
the-art baseline generative model on
broadcast news recognition.

TABLE II
SAMPLE OF RESULTS FROM THE LITERATURE ON SUB-WORD

MODELS IN SPEECH RECOGNITION. ALL NUMERICAL RESULTS
REFER TO RELATIVE IMPROVEMENTS (E.G., ERROR RATE

REDUCTION FROM 20% TO 18% IS A 10% IMPROVEMENT).

feature functions combining phone-based and articula-
tory information.

IV. EMPIRICAL MODEL COMPARISONS

To give an idea of the current state of sub-word
modeling research, we provide selected results from the
literature in Table II. A head-to-head comparison has
not been done for most of the models discussed here,
so reported performance improvements are specific to a
particular type of recognition system, task (e.g., larger
vs. smaller vocabulary), and choice of data. We provide
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a sample of the reported results in terms of relative im-
provement, the percentage of errors made by a baseline
system corrected by a proposed approach. Some of the
approaches have been applied to phonetic recognition;
here we include only word recognition results. The first
four lines in the table describe phone-based dictionary
expansion techniques discussed in Section II-A. The
next three lines refer to acoustics-based approaches
(Section II-C). Here the goals of the approaches differ
somewhat: While all aim to improve recognition perfor-
mance, automatically learned units also allow learning
the pronunciation dictionary from data. The next three
lines give results of sub-phonetic feature-based models
(Section II-D). While these have shown some gains in
performance, they have largely not yet been incorpo-
rated into large-scale state-of-the-art systems. Finally,
the last line gives an example of a conditional model
(Section II-E) with feature functions encoding sub-word
structure. While many of the approaches show significant
improvement over single-/multiple-pronunciation phone-
based systems, at least 75% of the errors are not cor-
rected by any of the approaches, leaving this area still
open for wide-ranging research.

It is sometimes useful to test a sub-word model sep-
arately from a complete recognizer, to isolate its effects
from those of the observation and language models.
It is also sometimes necessary to do so, when testing
newer, more speculative approaches for which various
engineering details have not yet been addressed. One
such measure is performance on the task of lexical
access (also sometimes referred to as “pronunciation
recognition” [81]), consisting of predicting a word given
a human-labeled phonetic (or any sub-word) transcrip-
tion. Other measures include phonetic error rate of
predicted pronunciations [10] and perplexity of surface
sub-word units given the canonical units [30], [60].
These measures are not necessarily indicative of eventual
performance in a complete speech recognition system,
but they help to analyze the effects of different modeling
choices. Some measures, such as phonetic error rate
and perplexity, are difficult to compare across models
that use different types of units. Here we present a
sample of results on lexical access for a subset of the
phonetically transcribed portion of Switchboard [13].
Table III shows the performance of a few basic baselines,
a phone-based model using context-dependent decision
trees (an implementation by Jyothi et al. [60] of a
model similar to that of Riley et al. [30]), and several
articulatory and discriminative models. The top half of
the table shows that this task is not trivial: A naı̈ve
dictionary lookup, or a lookup with rules, does very
poorly (though note that a complete speech recognizer

Model Error
rate (%)

Baseform lookup [50] 59.3
Knowledge-based rules [50] 56.4
Baseforms + Levenshtein distance [79] 41.8
Context-independent articulatory DBN [50] 39.0
Context-dependent phone model [60] 32.1
Context-dependent articulatory DBN [60] 29.1
CRF + phonetic/articulatory feature functions [79] 21.5
Large-margin + phonetic/articulatory feature f’ns [79] 14.8

TABLE III
LEXICAL ACCESS ERROR RATES (PERCENTAGES OF INCORRECTLY
CLASSIFIED WORDS) ON A PHONETICALLY TRANSCRIBED SUBSET

OF THE SWITCHBOARD DATABASE.

with an acoustic model would recover some of the
errors made by the lexical access models). The remaining
results show the potential advantages of sub-phonetic
features, context modeling, and discriminative learning
for sub-word modeling. As these approaches have not
been tested in complete speech recognizers (except for
highly constrained variants, e.g. [59]), their results must
be considered suggestive at this point.

V. DISCUSSION

The challenges of sub-word modeling are some of
the factors that have kept speech recognition from pro-
gressing beyond restricted applications and beyond high-
resource settings and languages. We have motivated
the need for breaking up words into sub-word units
and surveyed some of the ways in which the research
community has attempted to address the resulting chal-
lenges, including traditional phone-based models and
less traditional models using acoustic units or sub-
phonetic features. Through the unifying representation of
graphical models, we have noted the commonalities and
differences among the approaches. We have highlighted
a few of the main existing results, showing that different
types of models have benefits in certain settings. We
cannot yet conclude which models are preferred in
which circumstances, and certain approaches are yet to
be scaled up for use in state-of-the-art systems. It is
important to note that many of the approaches described
here, in particular most of the work cited in Tables II
and III, have not entered the mainstream; the area of sub-
word modeling is still actively searching for solutions to
its challenges.

Certain themes are clear, however. First, the most
natural ideas of expanding phonetic dictionaries, heavily
studied in the late 1990s and early 2000s, are surpris-
ingly difficult to turn into successful sub-word models.
One reason is the continuous nature of pronunciation
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variation. The alternative of modeling all variation at the
acoustic level achieves similar, but not improved, results
to phonetic dictionary expansion. The “intermediate”
approaches of sub-phonetic feature models have the
potential to both cover the continuum of pronunciation
variation and be more robust to low-resource settings,
but have yet to be tested in large-scale recognition.
Modeling context is important—whether it is phonetic
context in phone-based models [30], word-level context
that changes the prior distribution of pronunciations [10],
[2], [7], or articulatory context in sub-phonetic mod-
els [60]. Finally, conditional or discriminative modeling
has received relatively little attention in sub-word mod-
eling research, but can potentially improve performance
significantly [35], [65], [79].

The field is starting to benefit from combining some
of the ideas discussed here, in particular through much
tighter coupling between sub-word modeling, observa-
tion modeling, and machine learning techniques. New
work on discriminative sequence models is making it
possible to incorporate much richer structure than has
been possible before [65], [79], [82], [63], [64].

We have not explored all issues in sub-word modeling
in detail. In particular, the interactions between sub-
word modeling, observation modeling, and the choice
of acoustic observations deserve more study. For exam-
ple, phonetic dictionary expansion may affect different
systems differently (e.g., possibly achieving greater im-
provements in a segment-based recognizer [33] than in
HMM-based recognizers [30], [10]), but to our knowl-
edge there have been no direct comparisons on identical
tasks and data sets. We have also only briefly touched
on automatic sub-word unit learning and the related task
of automatic dictionary learning [39], [40], [47].

In some domains there is now an explosion of data,
making it possible to learn very rich models with large
context. At the same time, there is great interest in mul-
tilingual and low-resource domains, where data is scarce
and parsimonious models are particularly appealing.

One of the crucial aspects of sub-word modeling,
which differentiates it from other aspects of speech
recognition, is that it is modeling something that is
never observed: There is no way to obtain absolute
ground-truth sub-word unit labels, and we do not know
precisely what these units should be. However, as we
have discussed here, except in rare cases (e.g., very small
vocabularies), it is necessary to break up words into sub-
word units and confront the resulting challenges.
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[42] M. Saraçlar and S. Khudanpur, “Pronunciation change in
conversational speech and its implications for automatic speech
recognition,” Computer Speech and Language, vol. 18, no. 4,
pp. 375–395, 2004.

[43] T. Svendsen, K. K. Paliwal, E. Harborg, and P. O. Husøy, “An
improved sub-word based speech recognizer,” in ICASSP, 1989.

[44] T. Hain, “Implicit pronunciation modeling,” In Proc. ITRW
PMLA [28].
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