ON THE PHONETIC INFORMATION IN ULTRASONIC MICROPHONE SIGNALS

Karen Livescu Bo Zhu, James Glass

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Cambridge, MA 02139, USA
{boz, gl ass}@ni t. edu

Toyota Technological Institute at Chicago
Chicago, IL 60637, USA
kl i vescu@ichi cago. edu

laM al /aN a/ laNG a/

)

IS
o
N}

frequency (kHz

be used in addition to audio to improve automatic speech recog-
time (seconds)

ABSTRACT 40.4

We study the phonetic information in the signal from an ultrasonic :

“microphone”, a device that emits an ultrasonic wave toward a _

speaker and receives the reflected, Doppler-shifted signal. This can : :

40.0“ *

nition. This work is an effort to better understand the ultrasonic " -

signal, and potentially to determine a set of natural sub-word units.

We present classification and clustering experiments on CVC and

VCV sequences in speaker-dependent and multi-speaker settings. I ==

Using a set of ultrasonic spectral features and diagonal Gaussian 22 24 26 32 34 38 42 44 46

models, it is possible to distinguish all consonants and most vowelqgig_ 1. Ultrasonic spectrograms for /a M a/, /a N &/, /a NG a/. The izt

When clustering the confusion data, the consonant clusters mostjes correspond to boundaries of the nasal consonant.

correspond to places and manners of articulation; the vowel data

roughly clusters into high, low, and rounded vowels.

et al. have studied the use of ultrasonic signals for voice activity de-

tection [7] and speaker recognition [8]. However, to our knowledge
1. INTRODUCTION no dgtailed studies have been glone on Fhe Iinggistic infprmation in

the signal, analogous to phonetic confusion studies on video.
A great deal of work has been devoted to the use of non-acoustic o, goa|, therefore, is to understand the phonetic information

signals, especially video [1], in addition to audio for improved ;, she yitrasonic signal. Since the signal is generated by articula-

speech recognition. Here we consider the signal from an ultrasonig, motions, it is plausible that we can discriminate among features

“microphone”, a dewc_e that emits an ultrasonic sou_nd wave towarguch as place of articulation. We may expect, as with video, that we
the speaker and receives the reflected, Doppler-shifted signal. ThS nnq¢ distinguish between voiced and voiceless phonemes. Beyond
is much cheaper than video, both in actual cost and in data ralgyege general expectations, it is less clear what to expect. It is not
and is less intrusive. In this work we investigate the linguistic in-jaar to what extent we should be able to discriminate among simi-
formation in the ultrasonic signal. This is of scientific interest, but|, 4riculations in more forward or more back places, e.g. alveolar
also a necessary step for extending the use of ultrasonic signals { yejar, since the ultrasonic signal is in principle affected only by

larger-vocabulary tasks where sub-word units are used. In thie Sengy e|qcity of reflecting surfaces. It is also not clear to what extent
this work can be viewed as an initial attempt at defining ultrasonig,o signal is affected by speaker and phonetic context.
sub-word units, analogously to phonemes for audio and visemes for

video. Similarly to prior work on video [2, 3, 4], we perform clas-

Index Terms— Speech recognition, ultrasonic, multimodal

We follow the rough outline of previous experiments on lip-

rF_ading from video [2]. We train classifiers for nonsense utterances

sification and clustering experiments on nonsense consonant-vow%om(,jlining a set of target vowels and consonants, and analyze their
consonant (CVC) and vowel-consonant-vowel (VCV) S€QUENCeontusions. In the following sections, we describe the ultrasonic

and study th_elr d_ependence on speaker and phonetic context. hardware, data collection effort, and classification experiments.
Ultrasonic microphones take advantage of the Doppler effect:

When a sinusoidal sound wave at frequerfgyimpinges on a sur- 2 HARDWARE AND DATA COLLECTION

face moving at velocity, the frequency of the reflected sound is C i ) i

F = fo(1+ v), wherec is the speed of sound. The emitted ul- The ultrasonic hardware is a next-generation version of the one used

trasonic signal in our setup consists of a beam that may imping' [6] @nd is described in detail in [9. The ultrasonic transmitter

on multiple surfaces moving at different velocities, so the reflecteMits @ 40 kHz square wave. The reflected signal is received by the

signal in general has a complex spectrum. Figure 1 shows exampfitrasonic receiver, and is then amplified and passed through a 40

spectrograms of ultrasonic signals from our data collection. kHz bandpass filter and digitized. The audio is snmultaneously cap-
Jennings and Ruck [5] showed early promising results with ar{u_red by the on-board_or external microphone and low-pass filtered

ultrasonic dynamic time warping-based “lip-reader” for isolated dig-ith @ cutoff of approximately 8 kHz. Both channels are transferred

its. Zhuet al. [6] found that continuous digit recognition in noise (© & host computer over USB. The device is approximately 1.5 in.

benefits significantly from the ultrasonic signal as well. Kalgaonkai9h X 2.5 in. wide x 1 in. deep.

This research was supported in part by NIH Training Grant T32 !We gratefully acknowledge the assistance of Carrick Dééwaid luliu
DC000038, and by a Clare Boothe Luce Post-Doctoral Fellgwsh Vasilescu at MIT with the new ultrasonic hardware.



Data collection was done in a quiet office environment. Eight [__Task [[ Speaker1l [ Speaker2[ Multi-speaker |

speakers, six male and two female, read a script consisting of iso- [ /hVd/ 407 | 503 ] 33.2 l
lated words each containing a target vowel or consonant. Each faCal 59.4 69.2 47.9
speaker was positioned with his/her mouth approximately centered ficil 34.8 47.9 30.0
with the ultrasonic sensors and about 6-10” away from the hardware. /é\%%l;/h/ égg gg-g ﬁ-g
The audio and ultrasonic channels were simultaneously recorded; ATVEV a7 55 375

here we report on experiments with the ultrasonic signal only. The
script consisted of 15 English vowels in the same consonantal enviFable 1. Accuracies (in %), of vowel (15-way) and consonant (24-way)
ronment (/h V df) and 24 English consonants in four VCV contextsclassification. “All VCV” is the mean accuracy over the fouEV tasks.
(acal,/iCil,JuCul,fah C ah), foratotal of 111 distinct NONSENSY se 10-fold cross-validation. For each experiment, the data is split
words. Two speakers (the first two authors, referred to as Speak

. - Thto ten non-overlapping subsets, and ten train/test runs are done us-
1 a_nd Speaker_ 2.) recorded twenty sessions of t_he 111-word scng g a different 90%/10% split in each. We report the average statis-
while the remaining speakers recorded two sessions each.

tics over the ten train/test runs. For the multi-speaker experiments,
3. PHONETIC CLASSIFICATION EXPERIMENTS the same procedure is used with a 13-way split. ,

) ) Table 1 shows the overall accuracies. For each cell in the table,
3.1. Preprocessing and feature extraction a separate set of models was trained on the corresponding data.
In addition to the reflected ultrasonic signal, the carrier signal is alsd’he multi-speaker condition included all of the recorded data, while
received directly from the transmitter, and can be strong enough tthe Speaker 1 and 2 conditions included only the corresponding
overwhelm the reflected signal near the carrier frequency. To remowpeaker’s data. All accuracies are much higher than chance&4
the carrier signal, we first approximate its spectrum as the spectrufor vowels and~ 4% for consonants), so there is significant infor-
of the first frame of each utterance, in which there should be naenation in the ultrasonic features for these tasks. Second, for the
speech or significant motion. For each remaining frame, we comeonsonant tasks, performance is generally best for the /a/ context,
pute a normalized spectrum in which the magnitude at the carrigfiollowed by /ah/, /i/, and then /u/. This is expected, since /a/ has
frequency is matched to the first frame. We subtract the normalthe widest lip opening, and therefore the best opportunity for the
ized spectrum from the received spectrum, and use the result as thirasonic beam to impinge on surfaces inside the mouth, while the
signal for further processing. In addition, each word is segmentedther vowels have progressively narrower lip opening. Third, the
semi-automatically: The SUMMIT speech recognizer [10] is usechighest accuracies are obtained for Speaker 2 and the lowest for
in forced alignment mode to generate two boundaries, one before multi-speaker condition. The ultrasonic signal, like the acoustic
and one after the target phoneme, and the result is edited manuallgignal, is therefore quite speaker-dependent.

We extract three types of spectral features, the first two of which

were used in [6]: (1Jrequency-band energy averageswe parti-  3.3. Confusion matrices

tion the ultrasonic spectrum into 10 non-linearly spaced sub-bandsy, 5 petter understanding of the misclassifications, we study con-
centered around the carrier frequency, and compute the average &flsion matrices and clusterings for each task. Here we include a

ergy in each sub-band, in dB relative to the energy at the carriefy,esentative subset. Figure 2 shows VCV confusion matrices for
frequency; (2)energy-band frequency averagesWe partition the *  gpeaier 1 in the /a/ and /il contexts. Each matrix eglrepresents
spectrum into 12nergybands and compute the mean frequency ingya number of times phoniewas classified as phonje and is dis-
each band; (3p)eak_locations:The ultrasonic spectrograms contain played numerically and via cell shading. In going from the /a/ to
peaks correspond|_ng to forvvar_d or backv_vard motions. We US€ g% context, there are more misclassifications, but they tend to cluster
fe_at_ures the peak times, in particular the times of the maximum anfeq nd the diagonal, indicating that consonants with similar place
minimum of the frequency average features in a given energy bange confused (the labels are ordered roughly by place). For the /u/
within a 40ms window of phonetic boundaries. context (not shown), the off-diagonal confusions are much moire u

‘Next we generate a single vector at each phonetic boundary. We |y gistributed, while the case of /ah/ is similar to that of /a/.
define twelve windows spanning both sides of each boundary (0- Figure 3 shows the overall VCV confusion matrices (summed

6ms, 6-18ms, 18-30ms, 30-60ms, 60-90ms, 90-180ms) andutemp e, the four contexts) for Speaker 2 and the multi-speaker case,
the means of the energy and frequency features over each windoW, § 1a vowel confusion matrix for Speaker 1 (excluding “extreme”
Finally, we concatenate the averaged energy and frequency feat”r&r?)hthongs Jayl, Ioyl, law/). Many of the consonant confusions are
and the four peak location features (two per boundary) to give a pefs pected such,as b;etween voiced/voiceless pairs. However, this is
utterance feature vector of 532 dimensions. This vector is projected . alwa);s the case, e.g. /p/ and /b are rarely confused. Th’is may

toa sr_naller_dime_nsion using principz_al components analysis (PCA)oe because of the difference in voice onset time, and therefore peak
jl'h.e dimensionality for vowel classification .t‘."‘Sks was set 1o maxXjgeations, For Speaker 2, the confusions are concentrated near the
![mlzke t.Te accurtatcy for _ea_ch ;ﬁ)eaker condition; for thfh C?ns‘on"’”?ﬁagonal, indicating within-place confusions. This also holds for

asks, itwas set to maximiz€ the mean accuracy over the four C0r§peaker 1 (not shown), and less strongly in the multi-speaker case.

texts for each speaker condition. The PCA dimension ranged frorpn Speaker 1's vowel data, the confusions are more concentrated
26 to 52, but did not make a large difference over a wide range. among vowels with similar f’ront/back position

3.2. Phonetic classification

We use a single diagonal Gaussian to model the distribution of fe
ture vectors for each phonetic class, where a class is a /h V d/ or /#inally, we attempt to better understand how the phonemes clus-
C V/word. For each test utterance with feature ve@owe classify  ter using hierarchical clustering. The main questions here are (1)
it by finding the most probable modél* = arg maxc p(C|O) = is there a need to cluster phonemes into ultrasonic sub-word units,
arg maxc p(O|C), whereC ranges over vowels or consonants and analogously to visemes for lipreading, i.e. are there some phonemes
all classes are equally likely. For the single-speaker experiments, what cannot be distinguished from the ultrasonic signal, and (2) if we

24 Clustering: The search for ultrasonic sub-word units



/aCal/ confusion matrix, Speaker 1
P B MF V WTHDHT D N S Z L SHZHCHJ Y R K G NGH

Task [[ Clusters ]

p 1 2 2 Sp. 1VCV {bm} {p} {w} {fthssh {vdhzzh {dnchj}
Emm : . L {1} {tk} {yrgng} {h}

Fo1o1 1@l 12 3 11 Sp. 2VCV {bm} {p} {w} {fvdhlgng} {thszshzhch}
v ;mﬂm : _ {dn} {t} {k} {yr} {h}

™ LB 3 e 3 3 Multi-sp. VCV {bm} {p} {w} {fvthdhszshzh {dnl}
wooaoz EL e s {chi} {tk} {gng} {yr} {n}

° 5 2 12 Sp. 1 vowels {iy ih ey eh ai} {ae aa ap {er} {uh} {uw ow}

. , ! 2 S ) Sp. 2 vowels {iy ih eh al} {ey ae aa ap{er ow} {uh} {uw}

2 2 o R 1 Multi-sp. vowels || {iy ey} {ih eh al} {ae aa ap {er uw ow} {uh}

Table 2. Clusters derived from the dendrograms in Figure 4.

the corresponding level is marked in each dendrogram with a dotted
red line. Table 2 shows the resulting clusters. The consonant clus-
ters often correspond to places of articulation (e{g.m}, {g ng}),

but sometimes to manners (e.§t,k}, {y r}). The vowel clusters
correspond roughly to high, low, and rounded.
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/iCi/ confusion matrix, Speaker 1

P B MF V WTHDHT D N S Z L SHZHCHJ Y R K G NGH
;I!nj a, B E 4g 4. CONCLUSIONS
v 0. ml P We have studied phonetic discrimination in ultrasonic microphone
v B zml!a 22 1 B = B signals, in the settlng qf nonsense./h Vd/.and N CV/ glas§|f|§atlon,
. T m o . and can draw some initial conclusions. First, we can discriminate at
S oy (EHE L H above chance level among all consonant pairs in the combined VCV
b 1 - R 11 data, and among most vowel classes. It may therefore not be nec-
. Z s ol w e essary to group consonants into equivalence classes, as is done for
z I 1B [z . 2 2 video. The experimental setup is idealized, however; this analysis
- . e e 2 . should be extended to continuous speech. The phonetic confusions
- T E e 1!-i e differ between speakers and phonetic contexts. For example, con-
J 4 7

sonants in an /i/ or /u/ context are more difficult to distinguish than

1
2 1 12 11 1
. ! 9 Séj n B those in an /a/ or /ah/ context. It remains to be seen whether different
Koot 11 2 2[4 B4 features or more complex models (e.g. Gaussian mixtures), trained
G 1 11 3 1 5 1 2 4 1 . .
s T B b Y 8 on more data, would be more robust to such variation.
" ) = 3 2ok From confusion matrices and hierarchical clustering, we have
Fig. 2. VCV confusion matrices in two contexts for Speaker 1. found that the most salient groupings of consonants include both

. . . place and manner of articulation classes, and do not necessarily in-
wish fo cluster thi phone.mes, what are the na.tural cluisterlngs "Yude voiced/voiceless pairs. This differs from video, where the most

duce_d by the data’ F_or th'S. pUrpose, the_co_nfL_lsm_)n matrices providgjient givisions are along place of articulation. This may be because
us with a “?“”“’?" notion of |nter-phone_ d|35|m|lar|ty: We representthe ultrasonic microphone is sensitive mainly to the velocity, and not

each phoné by its row .Ve‘?tof of confusmn_frequgnmes,-vg, anql ._position, of reflecting surfaces. When clustering the multi-speaker

use a measure of dissimilarity between distributions as the dissi ‘onsonant data into ten classes, the resulting clustefg are} {p}

ilarity between phones. As. in previous vvprk on video [3], we use{W} {fvthdhszshzh {dn I}’{ch i} {tk} {g ng} {y r} {h}}.

the ¢ ”?ef"‘sure' a. ;ymmetnc and no_rmahzed relativexdf ¢ — When clustering the multi-speaker vowel data into five classes, the
VvV (x2(,7) + x2(4,4)) /2N, whereN is the number of tokens of resultis{{iy ey} {ih eh af} {ae aa ap {er uw owt {uh}}.

each phone and”(i, j) is thex* statistic comparing the confusion This study is an initial step toward understanding the phonetic

frequencies of phonemeto those of phonemg. We then cluster information in ultrasonic signals, and toward the question of what

hierarchically using average linkage: At each iteration, the two clus- . Lo Lo
ters with the smallest meah between their members are meraed. & good set of ultrasonic sub-word units (if any) may be. This will
The results of clusterin ?r?e overall VCV confusions for S gakérhelp us to expand the use of ultrasonic signals beyond the limited

. 9 ) P domains in which they have been used so far. Future work includes
2 and the multi-speaker set, and Speaker 1's vowel confusions, a

shown in Figure 4. The-axis corresponds 1. |ﬁvestlgat|on of additional ultrasonic features and direct comparisons

. . . of phonetic discrimination using ultrasonic and video signals.
First, we address the question of whether it is necessary to clus-

ter the phonemes at all. Are there any phoneme pairs that cannot
be distinguished at better than chance level? If each phorese
ChaQI’aCtenZEd by Its. confusion frequenciegyy, then We can use [1] G. Potamianos, C. Neti, G. Gravier, and A. Garg, “Automagcog-
a x” goodness of fit test to test the null hypothesis that phoneme™ ™ ption of audio-visual speech: Recent progress and chgdieh Proc.
i's confusions are drawn from the same distribution as phongsne IEEE, vol. 91, no. 9, 2003.
_By this me_asure, ata Slgmflcanc? Iev_el of 0.05, all Consona.mt _pqlrs[z] J. Xue, J. Jiang, A. Alwan, and L. E. Bernstein, “Consdramfusion
n Fhe multl-speaker Qata are distinguishable, and the only indistin- structure based on machine classification of visual feaiaresntinu-
guishable vowel pair i§aa, ag. ous speech,” iMudio-Visual Speech Processing WorksH2po5.
Second, we look for natural clusterings: What clusterings would (3] J. Jiang, E. T. Auer Jr., A. Alwan, P. A. Keating, and L. EerBstein
give highly discriminable classes? It is arguable what “highly dis- ~ " «gimilarity structure in visual speech perception and agtighonetic
criminable” means; here we look at the result of clustering the con-  signals,” Perception and Psychophysje®l. 69, no. 7, pp. 10701083,
sonants into 10 classes and the vowels into 5 classes. In Figure 4, 2007.

5. REFERENCES



Overall VCV confusion matrix, Speaker 2
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Fig. 3. Overall confusion matrices for VCV and vowel tasks.

[4] B. E.Walden, R. A. Prosek, A. A. Montgomery, C. K. SchendaC. J.
Jones, “Effects of training on the visual recognition of sonants,”J.

5
1

- oo R
&

&

6
5
16
11
27
10

1

2

1
1
1
7
13
4
1
9
1
a

1

6
24

13

B A I S RN N N

Vowel confusion matrix, Speaker
iy ih ey eh a aa ah a0 uw

®
I R R I

2

Y R K G NGH

Y R K G NGH

1

er

1
1

2

Sp. Hearing Resvol. 20, pp. 130-145, 1977.

[5] D. L. Jennings and D. W. Ruck, “Enhancing automatic speechg-
nition with an ultrasonic lip motion detector,” ICASSP 1995.

[6] B. Zhu, T. J. Hazen, and J. R. Glass, “Mutimodal speechgsition

with ultrasonic sensors,” imterspeech2007.

[7] K.Kalgaonkar, H. Rongguiang, and B. Raj, “Ultrasonicfipter sensor

uh

H
=}
N - )

[10

Clustering dendrogram, Speaker 2 VCV

Z ZHSH J CHTH S F VDHL GNGD N Y R T K P B MW H

Clustering dendrogram, multi-speaker VCV
451

35

251

05F

F V ZZH S SHTHDHD N LCHJ GNGB M HP T K WY R

Clustering dendrogram, Speaker 1 vowels

1.8

1.6

0.8

0.4

0.2r

eh ah iy ih ey ae aa ao er uw ow uh

Fig. 4. Clustering dendrograms corresponding to Figure 3.

for voice activity detection,”IEEE Signal Processing Lettersol. 14,
no. 10, pp. 754-757, 2007.

K. Kalgaonkar and B. Raj, “Ultrasonic Doppler sensor fpeaker
recognition,” inlICASSPR 2008.

C. Detweiler and I. Vasilescu, “Ultrasonic speech captooard: Hard-
ware platform and software interface,” Indep. study fingdgra2008.

J. Glass, “A probabilistic framework for segment-baspéexh recog-
nition,” Comp. Sp. Langvol. 17, pp. 137-152, 2003.



