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ABSTRACT

We consider the problem of learning a linear transformation
of acoustic feature vectors for phonetic frame classification,
in a setting where articulatory measurements are available at
training time. We use the acoustic and articulatory data to-
gether in a multi-view learning approach, in particular using
canonical correlation analysis to learn linear transformations
of the acoustic features that are maximally correlated with the
articulatory data. We also investigate simple approaches for
combining information shared across the acoustic and artic-
ulatory views with information that is private to the acous-
tic view. We apply these methods to phonetic frame classi-
fication on data drawn from the University of Wisconsin X-
ray Microbeam Database. We find a small but consistent ad-
vantage to the multi-view approaches combining shared and
private information, compared to the baseline acoustic fea-
tures or unsupervised dimensionality reduction using princi-
pal components analysis.

Index Terms— Multi-view learning, canonical correla-
tion analysis, articulatory measurements, dimensionality re-
duction, acoustic features

1. INTRODUCTION

The question of whether articulatory information can help in
automatic speech recognition has been addressed in a number
of ways. It is intuitively appealing to think that some form of
articulatory information—using either articulatory measure-
ments, such as tracks of flesh points [1, 2], or knowledge
about articulatory processes—should help in recognition. In-
deed, it has been shown that phonetic recognition can be im-
proved if articulatory measurements are available as obser-
vations at test time [3], and that word recognition may be
slightly improved if articulatory measurements are included
as observed variables in training and as hidden variables at
test time [4]. Knowledge-based approaches, in which the ar-
ticulatory information is never measured but rather inferred
from phonetic labels or otherwise used as hidden variables
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in the recognition model, have also been used with varying
degrees of success [5, 6].

In this work we take a new approach to the use of articu-
latory measurement data that is available at training time but
not at test time. We ask whether it is possible to use the mea-
surement data to learn useful transformations of the acoustic
feature vector. This is a natural setting, in that corpora of
acoustic and articulatory measurements are available and are
collected for many purposes. In general, articulatory data is
more feasible to collect at training time than at test time.

We rely on ideas from multi-view learning, in which mul-
tiple “views” of the data (e.g., from multiple measurement
modalities) are available for training but possibly not for
prediction at test time [7]. We distinguish this term from
multi-modal approaches, in which the multiple measurement
modalities are available at both training and test time.

A typical approach in speech recognition is to generate a
high-dimensional acoustic feature vector by appending multi-
ple frames of raw features and then to reduce dimensionality
using either an unsupervised transformation such as principal
components analysis (PCA), a linear supervised transforma-
tion such as linear discriminant analysis (LDA) and its exten-
sions, or a nonlinear supervised transformation [8]. In this
work we learn transformations in an unsupervised way, but
using the second view (the articulatory measurements) as a
form of “soft supervision”. This avoids some of the disadvan-
tages of unsupervised approaches, such as PCA, which are
very sensitive to scaling of the data, and possibly of super-
vised approaches, which are more task-specific.

We propose an approach using canonical correlation anal-
ysis (CCA), which finds pairs of maximally correlated projec-
tions of data in two views [9, 10]. In our case, the two views
are the acoustic and articulatory data, and only the acoustic
projections are used at test time. The intuition is that articu-
latory measurements provide information about the linguistic
content, and that the noise in the two views is largely uncor-
related and therefore filtered out by such a technique.

One challenge is that not everything that is uncorrelated
is noise: The acoustic view may contain discriminative infor-
mation that is not correlated with the articulatory view. In this
case, we would like to combine the projections learned with
CCA (“shared” information) with additional projections that



are “private” to the acoustic view. We present such combined
approaches in the following section.

2. METHODS

We begin with a training data set of N paired vectors
{(xi, yi)}Ni=1 = {(x1, y1), ..., (xN , yN )}, where xi ∈ Rd1 ,
yi ∈ Rd2 , and d1 and d2 are the dimensionalities of the
feature vectors in the two views. Let X and Y be the cor-
responding matrices of training data, i.e. the matrices whose
ith columns correspond to xi and yi, respectively. In our
case, let X be the acoustic training set and Y the articulatory
training set. Each pair (xi, yi) corresponds to one frame of
simultaneously recorded acoustics and articulation.

In this work we consider the task of framewise phonetic
classification. We make the assumption that the two views are
uncorrelated conditioned on the phonetic class. When this as-
sumption holds, any dimensions that are correlated must re-
late to the hidden class. To the extent that this assumption
holds, then, the learned dimensions will be discriminative for
phonetic classification.

2.1. Canonical correlation analysis

Canonical correlation analysis (CCA) [9, 10] finds pairs of
directions vk, wk, 1 ≤ k ≤ min(d1, d2) such that the pro-
jections of X and Y onto those directions, respectively—the
canonical variables vT

k X and wT
k Y—are maximally corre-

lated. The first pair of directions is given by

{v1, w1} = arg max
v,w

corr(vTX,wTY )

= arg max
v,w

vTCxyw√
vTCxxvwTCyyw

where Cxy is the cross-covariance matrix between X and Y
and Cxx, Cyy are the auto-covariance matrices. Subsequent
direction vectors {vk, wk}, k > 1, maximize the same cor-
relation, subject to the constraint that the resulting projected
variables vT

k X,w
T
k Y are also uncorrelated with all previous

ones, {vT
j X,w

T
j Y | j < k}.

The canonical directions are found as the solution of an
eigenvalue problem:

C−1
xx CxyC

−1
yy Cyxv = λ2v

w ∝ C−1
yy Cyxv

where the values of λ are the correlations between the projec-
tions. We reduce dimensionality by projecting X along the
top M eigenvectors.

Unlike PCA, CCA relies on correlation between the pro-
jected variables (statistical orthogonality) rather than or-
thogonality of the direction vectors, and is affine-invariant.
This property helps us to avoid the key disadvantage of PCA,
which is sensitive to affine transformations of the coordinates.

LDA is a special case of CCA where one of the views is the
labels represented as a binary matrix of indicator vectors.

CCA is typically regularized by replacingCxx withCxx+
rxI and Cyy with Cyy + ryI , where I denotes an identity
matrix [11]. This ensures that the matrices are invertible and
avoids spurious correlations in the data among low-variance
input dimensions. The parameters rx and ry are tuned on
held-out data.

Our assumption of uncorrelatedness given the phone class
may not be satisfied. For example, the audio and articula-
tion may be correlated through the speaker identity or emo-
tional state. In this work we restrict ourselves to speaker-
dependent experiments—that is,X and Y are data from a sin-
gle speaker—which partially avoids this problem. This issue,
however, requires further study.

Note that CCA provides two projections, one for each
view. In our case, we are interested in improving performance
on a prediction task that uses acoustic data, so we retain only
the projections of the acoustic feature vector. However, the
approach can in principle be applied with either or both views
available at test time.

2.2. Shared-private representations

CCA finds only those dimensions that are correlated across
the views, which we refer to as “shared” information. How-
ever, there may be additional discriminative information in
the acoustics that is not correlated with the articulatory mea-
surements, which we call “private” information. For exam-
ple, in our case the articulatory data does not include glot-
tal or velar measurements. Therefore, the acoustic features
presumably contain “private” information about voicing and
nasality.

In previous work [12], shared and private information
were combined by appending the CCA features to base-
line MFCC features, which we refer to as MFCCA (for
MFCC+CCA). We also explore a different approach that con-
strains the private dimensions to be non-redundant with the
shared ones. The procedure is as follows:

(V,W ) = CCA(X,Y ) , i.e. use CCA to find the projec-
tions {vk}Mk=1, {wk}Mk=1 and let V and W be matrices
in which the kth column vectors are vk and wk, respec-
tively. W is not used from this point on.

P = PCA
(
(V ⊥)TX

)
, i.e. apply PCA to the orthogonal

complement of the acoustic subspace defined by V to
find projections {pj}Lj=1 and let P be a matrix in which
the jth column vector is pj .

D = [V P ] , i.e. form the final feature transformation D by
concatenating the CCA and PCA directions.

This is almost identical to the “non-consolidating compo-
nents analysis” (NCCA) of [13] (up to a difference in regular-
ization) and we refer to it as NCCA henceforth.



After learning a transformation D, all of the acoustic fea-
ture vectors (both training and testing) are projected along the
vectors in D, forming the new acoustic data DTX . In the
case of CCA,D = V ; in MFCCA,D = [V I]; and in NCCA,
D = [V P ].

3. RELATED WORK

CCA has rarely been used for speech tasks. In [14], CCA was
used to reduce dimensionality of acoustic features for im-
proved clustering into speakers. In [12], it was used to learn
transformations of acoustic features for improved speaker
recognition in noise. In [15], it was used for speaker normal-
ization, by transforming the acoustics of different speakers
so as to be maximally correlated. It has also been used in
audio-visual synchronization and speaker recognition [16, 17]
where both views are available at test time. In [18], kernel
(nonlinear) CCA was used for acoustic-articulatory inversion.
We are unaware of any prior work on a speech classification
task in which CCA was used to learn an acoustic transform
using articulatory training data.

4. EXPERIMENTS

We address two questions in the context of phonetic frame
classification: (1) Can we learn useful transformations of the
acoustic data using articulatory data for training only? (2) Is
it necessary or helpful to combine shared and private dimen-
sions? In both cases, our results provide affirmative answers.

We use a subset of the University of Wisconsin X-ray
Microbeam Database (XRMB), which includes simultaneous
recordings of acoustic waveforms and articulatory measure-
ments for a number of tasks and speakers [2]. The articu-
latory data consist of horizontal and vertical displacements
of eight pellets on the speaker’s lips, tongue, and jaws, rel-
ative to reference pellets defining a speaker-specific coordi-
nate system, yielding a 16-dimensional vector at each time
point. Our experiments are speaker-dependent, using the two
XRMB speakers JW11 (male) and JW30 (female). The co-
ordinate systems can vary drastically between speakers; nor-
malizing for this is a challenge that we defer to future work.

For each utterance, we compute 13 mel-frequency cep-
stral coefficients (MFCCs) and their first and second deriva-
tives every 10ms with a 25ms window. We downsample the
articulatory data to synchronize with the acoustics and dis-
card any frames that have missing measurements. Finally, for
each frame we concatenate acoustic features over a window of
three frames and articulatory features over a window of seven
frames. This results in the data X ∈ R117×N , Y ∈ R112×N ,
where X is the acoustic data, Y is the articulatory data, and
N is the number of frames. In our case N is about 50, 000 for
each speaker.

We consider two types of classifiers: support vector
machines (SVMs) using radial basis function kernels with
a one-against-one multi-class implementation [19] and k-
nearest neighbors (kNN) with a correlation distance d(x, y) =
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Fig. 1. Dependence of error rate on CCA regularization
for speaker JW30, using an SVM classifier with CCA-
transformed features.
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Fig. 2. Dependence of error rate on NCCA dimensionali-
ties for speaker JW30, using an SVM classifier with NCCA-
transformed features.

1 − corr(x, y). We compare the performance of these clas-
sifiers on the raw MFCCs (baseline) and on MFCCs trans-
formed with PCA, CCA, NCCA, and MFCCA. The hyperpa-
rameters to be tuned are the number of neighbors k in kNN,
kernel width and cost in SVMs, PCA dimensionality L, CCA
dimensionality M , and CCA regularization parameters rx
and ry . We use a five-fold cross-validation setup: In each
fold, 60% of the utterances are used for training, 20% for
tuning (development), and 20% for final testing.

We obtain phone labels for the XRMB corpus using the
Penn Phonetics Lab Forced Aligner [20]. The alignments are
imperfect, but anecdotally very good. Short pauses and stress
are removed, leaving 39 phone classes.

Figure 1 shows the dependence of error rate on the CCA
regularization parameters and Figure 2 shows the dependence



Table 1. Best (CCA, PCA) dimensionalities for MFCCA and
NCCA

features MFCCA (M ) NCCA (M,L)
speaker JW11 JW30 JW11 JW30
kNN 50 110 (50, 10) (70, 10)
SVM 30 30 (50, 10) (30, 30)

Table 2. Error rates averaged over five folds for speakers
JW11, JW30. Boldface font indicates the best performance in
each column. An asterisk indicates a significant improvement
over the MFCC baseline (according to a t-test at p = 0.05).

speaker JW11 JW30
classifer kNN SVM kNN SVM
MFCC 30.96 26.78 36.63 32.42
PCA 30.76 28.26 35.88 33.49
CCA 30.81 27.99 35.37 33.28

MFCCA 29.01∗ 26.15∗ 34.42∗ 31.74∗

NCCA 29.43∗ 26.64 34.85∗ 32.26

on the NCCA dimensionalities for speaker JW30 and an SVM
classifier. Tuning over all four NCCA hyperparameters as in-
dependent variables is computationally intensive; we there-
fore assume that the best regularization parameters of NCCA
are similar to the best regularization parameters of CCA.

Figure 1 shows that performance is very sensitive to the
CCA regularization in the acoustic view rx, but insensitive
to the articulatory regularization ry; this is sensible, since
the acoustic view is the noisier one [11]. Figure 2 shows
that performance tends to depend more on the sum of the
CCA and PCA dimensionalities than on each alone. However,
the dependence on hyperparameters is speaker- and classifier-
dependent and, to a lesser extent, fold-dependent. The best
values of k tend to be in [8, 12], and of the final dimensional-
ity in [30, 70] (with varying divisions between PCA and CCA
dimensionalities). Table 1 shows the best CCA (M ) and PCA
(L) dimensionalities that achieve the lowest misclassification
rate on the development set for MFCCA and NCCA.

Table 2 shows the test set error rates averaged over the
folds for each experiment. In all cases, one or both of NCCA
and MFCCA significantly improve over the baseline and the
other techniques. This suggests that CCA helps to clean up
those parts of the acoustic signal that have articulatory cor-
relates. However, CCA alone is not sufficient; the articula-
tory view is missing crucial information (such as voicing and
nasality) that is important for phonetic classification. Figure 3
gives a more detailed view of the NCCA and MFCCA results,
showing the spread over the five folds.
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Fig. 3. Improvement (in %) of NCCA/MFCCA over baseline

5. CONCLUSION

We have shown the potential benefit of multi-view learning
of acoustic feature transformations using CCA when articu-
latory measurement data is available at training time. In our
experimental setting, the CCA features alone are not suffi-
cient, but in combination with additional “private” feature
dimensions—either the baseline features or a subspace or-
thogonal to the CCA features—they improve over the base-
line.

These experiments have been limited to linear transforma-
tions and unsupervised learning. Future work includes non-
linear extensions [10, 13], supervised and semi-supervised
extensions, application to noise robustness (as in [14, 12])
and domain-independence. In the supervised case, the labels
could be considered to be an additional view, or they can be
incorporated via additional terms in the objective function to
be optimized. A potentially more interesting setting is the
semi-supervised case, where labels are available for only a
subset of the data, or where some labels are more reliable
than others (as in our case, where the ground truth comes
from an automatic alignment). In the long run, the prac-
ticality of such multi-view techniques will be much greater
if they can be shown to extend beyond specific domains for
which the views are available. Multi-view methods should
be less dependent than supervised methods on a specific task
or data set; for example, finding acoustic dimensions that are
predictive of articulatory dimensions could be equally useful
for phonetic classification, word recognition, or speaker and
language identification. An interesting area for future work,
therefore, is the study of the domain- and task-independence
of features learned with multi-view techniques.
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