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ABSTRACT

Canonical correlation analysis (CCA) and kernel CCA can be
used for unsupervised learning of acoustic features when a
second view (e.g., articulatory measurements) is available for
some training data, and such projections have been used to
improve phonetic frame classification. Here we study the be-
havior of CCA-based acoustic features on the task of phonetic
recognition, and investigate to what extent they are speaker-
independent or domain-independent. The acoustic features
are learned using data drawn from the University of Wis-
consin X-ray Microbeam Database (XRMB). The features
are evaluated within and across speakers on XRMB data, as
well as on out-of-domain TIMIT and MOCHA-TIMIT data.
Experimental results show consistent improvement with the
learned acoustic features over baseline MFCCs and PCA pro-
jections. In both speaker-dependent and cross-speaker exper-
iments, phonetic error rates are improved by 4-9% absolute
(10-23% relative) using CCA-based features over baseline
MFCCs. In cross-domain phonetic recognition (training on
XRMB and testing on MOCHA or TIMIT), the learned pro-
jections provide smaller improvements.

Index Terms— multi-view learning, canonical correla-
tion analysis, articulatory measurements, XRMB, MOCHA-
TIMIT, TIMIT, speaker-independence, domain-independence

1. INTRODUCTION

A common approach to acoustic feature vector generation
for speech processing tasks is to first construct a high-
dimensional acoustic feature vector by concatenating multiple
consecutive frames of raw features (e.g., MFCCs or PLPs),
and then to reduce dimensionality using a feature transforma-
tion. The transformation may be an unsupervised one such
as principal components analysis (PCA), a linear supervised
transformation such as linear discriminant analysis (LDA)
and its extensions [1, 2], or a nonlinear supervised transfor-
mation [3]. In this work we consider unsupervised transfor-
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mation learning, but in a setting where a second “view” of
the speech data is available for some training data. In particu-
lar, we consider the case where articulatory measurements are
available as training data, but not at test time, and ask whether
we can use the articulatory information to learn which direc-
tions in the acoustic space are most useful. The approach
we present avoids some of the disadvantages of unsupervised
approaches, such as PCA, which are sensitive to noise and
data scaling, and possibly of supervised approaches, which
are task-specific.

Articulatory information has been used in speech recog-
nition in a number of ways [4]. Several databases of si-
multaneous acoustic and articulatory recordings are available
(e.g., [5, 6, 7]). Phonetic classification and recognition can be
improved if such articulatory measurements are available at
test time [8, 9]. This is an unnatural setting, but it suggests
that in the absence of articulatory data at test time, perhaps
we can predict the articulation from acoustics and use the pre-
dicted values as additional observations. However, acoustic-
to-articulatory inversion is a complex task (e.g., [10, 11]), and
to date it has been difficult to improve recognition perfor-
mance in this way [8, 9]. Other approaches use articulatory
data at training time and attempt to leave it hidden (i.e., im-
plicitly predict it) at test time [12]. Alternatively, knowledge-
based approaches, in which articulatory information is never
measured but rather used to constrain the hidden state struc-
ture, have also been proposed [13, 14, 15, 16].

While predicting articulation may be difficult, learning
acoustic features that are somehow informed by articulation
may be easier. In previous work [17, 18], we have shown that
this is indeed possible, and can be used to improve phonetic
frame classification. This work applies ideas from multi-view
learning, in which multiple views of the data are available for
training but possibly not for testing [19].

Our approach is based on canonical correlation analysis
(CCA), which finds pairs of maximally correlated linear pro-
jections of data in two views [20], and its nonlinear counter-
part kernel CCA [21]. The two views are the acoustic and
articulatory data, and only the acoustic projections are used at
test time. The intuition is that articulatory measurements pro-
vide information about the linguistic content, and that much
of the non-discriminative information in the two views is



largely uncorrelated and therefore filtered out. CCA/KCCA
have also been used with audio and video for speaker clus-
tering [22] and identification [23]; for speaker normaliza-
tion [24], where the views are the speakers; for articulatory
inversion [25]; and to study critical articulators [26].

In this paper our goal is to study the applicability of the
multi-view acoustic feature learning approach to more prac-
tical tasks and settings. We begin by applying the approach
to phonetic recognition. Here there are two training phases
– a feature learning phase, where both views are used, and a
recognizer training phase, where only the acoustics are used.
To our knowledge, this is the first time CCA- or KCCA-based
features have been used for this task. In addition, in order to
be practical, the approach should be applicable to new speak-
ers and domains, for which no articulatory training data ex-
ists. We study the degree to which the learned features are
speaker-independent or domain-independent, including inde-
pendence of dialect, recording conditions, and so on.

2. METHODS

The methods used here are based on those of [18]. We briefly
review them for completeness. CCA and KCCA are tech-
niques for learning linear or nonlinear functions of data in two
views that are maximally correlated [20, 21]. Linear discrimi-
nant analysis (LDA) is a special case of CCA where one of the
views is the labels. Unlike PCA, CCA is scale-invariant. One
assumption typically made is that the two views are largely
uncorrelated conditioned on some class of interest (in our case
the phonetic class), so that the dimensions that are correlated
between the two views should be discriminative for classi-
fication. This assumption is imperfect, and some work has
recently been devoted to relaxing it [27].

2.1. CCA and kernel CCA

Let X and Y denote the spaces of vectors in the two views,
HX ,HY the Reproducing Kernel Hilbert Spaces (RKHS) of
functions on X ,Y , and kx, ky the associated positive defi-
nite kernels. We consider random vectors X ∈ X , Y ∈ Y ,
with an unknown joint distribution that we can access only
through N training instances, {xi, yi}Ni=1. In our case, each
pair (xi, yi) represents features computed over one frame of
simultaneously recorded acoustics (xi) and articulation (yi).

Kernel CCA finds pairs of nonlinear projections of the two
views. The first pair of projections is defined as those func-
tions f1 ∈ Hx, g1 ∈ Hy that solve the optimization problem

{f1, g1} = argmax
f∈Hx,g∈Hy

cov (f(X), g(Y ))√
var (f(X)) · var (g(Y ))

, (1)

i.e., that maximize correlation between f(X) and g(Y ). Sub-
sequent projections {fj , gj} for j > 1 are found by solv-
ing (1) subject to the constraints that fj(X) is uncorrelated
with fi(X), gj(Y ) is uncorrelated with gi(Y ) and fj(X)

is uncorrelated with gi(Y ) for all i 6= j. CCA solves the
same problem for the case where the projections are linear,
f(X) = vTX, g(Y ) = wTY . CCA and KCCA can be used
for dimensionality reduction, by keeping the top projections.

For CCA, the solution is straightforward [21]: The vec-
tors v that maximize the objective are the top eigenvectors of
C−1xx CxyC

−1
yy Cyx, and w are given as w ∝ C−1yy Cyxv, where

Cxx, Cyy are the autocovariance matrices in each view and
Cxy is the cross-covariance matrix between X and Y .

To solve the nonlinear KCCA problem, we use the “ker-
nel trick” [28]. Since the nonlinear maps f ∈ Hx, g ∈ Hy
are in RKHS, we can express them as linear combinations of
the kernel evaluated at the data: f(x) =

∑N
i=1 αikx(x, xi),

and similarly for g(y). KCCA can then be written as finding
directions α1, β1 ∈ RN that solve the optimization problem

{α1, β1} = argmax
α∈RN ,β∈RN

αTKxKyβ√
(αTK2

xα) (β
TK2

yβ)
, (2)

where Kx ∈ RN×N is the centered Gram matrix Kx =
K − K1 − 1K + 1K1, Kij = kx(xi, xj) and 1 ∈ RN×N
is an all-1s matrix, and similarly for Ky . Subsequent vec-
tors {αj , βj} are solutions of (2) with the constraints that the
resulting {fj(X), gj(Y )} are uncorrelated with the previous
ones. To alleviate over-fitting, one instead typically maxi-
mizes the regularized objective [21]

αTKxKyβ√
(αTK2

xα+ rxαTKxα) (βTK2
yβ + ryβTKyβ)

. (3)

where rx, ry are regularization parameters. The optimization
is in principle simple: The objective is maximized by the top
eigenvectors of the matrix

(Kx + rxI)
−1

Ky (Ky + ryI)
−1

Kx, (4)

In practice this is not straighforward, since the kernel matri-
ces may be too large to compute the eigenvectors or even to
construct the matrix in Eq. 4. In previous work [18] we have
addressed this issue, and we next summarize the approach.

2.2. Scalable KCCA

As has been observed by ourselves and others [22], it can be
useful to further regularize by first projecting the data onto
an intermediate-dimensionality space, between the target and
original dimensionality. This is especially true for KCCA,
where the matrices involved grow with the number of train-
ing examples. For KCCA, the intermediate-dimensionality
projection can be done by decomposing the kernel matrix as
a gram-product of two lower-dimensional matrices:

Kx ≈ FTF, Ky ≈ GTG, (5)

where F,G ∈ Rm×N , for an intermediate dimensionality
m � N . These form lower-dimensional representations of



the maps f, g. Next, let

Cff = FFT , Cgg = GGT ,

Cfg = FGT , Cgf = GFT . (6)

The KCCA directions (α̂, β̂) in the reduced dimensionality
are related to the true KCCA directions (α, β) via α̂ = Fα
and β̂ = Gβ. As in CCA, the reduced dimensionality KCCA
directions are solutions to the eigenvalue problem

(Cff + rxI)
−1
Cfg (Cgg + ryI)

−1
Cgf α̂ = λ2α̂

β̂ ∝ C−1gg Cgf α̂.

The basis vectors for the original kernel matrices are then
given as α = F †α̂ = (FTF )−1FT α̂. The projections of
the training and test acoustic features are X̂ = αTKx and
X̂ (test) = αTK (test)

x , where [K (test)
x ]ij = kx(xi, x

(test)
j ) is the

kernel evaluated at the ith training and jth test example.
The gram-product decomposition of Eq. 5 is the most

computationally expensive step. We solve this via a block in-
cremental SVD approach, based on [29] and detailed in [18].
This is key to making KCCA feasible for typical speech prob-
lems. Note that we can apply incremental SVD to Eq. 5 but
not directly to Eq. 4, as computing the matrix of Eq. 4 is it-
self problematic. In our case, then, the initial dimensionality
reduction of Eq. 5 is motivated not only by regularization but
also (especially) by computation.

3. EXPERIMENTS

We experiment with the proposed acoustic features for pho-
netic recognition with 3-state monophone HMM/GMM rec-
ognizers. For most experiments, we use a subset of the Uni-
versity of Wisconsin X-ray Microbeam Database (XRMB) [5]
of acoustic and articulatory recordings. The articulatory data
consist of horizontal and vertical displacements of 8 pellets on
the speaker’s lips, tongue, and jaw, yielding a 16-dimensional
vector at each sample. We use data from the speakers JW11,
JW13, JW24, and JW30 (two male, two female). Base-
line acoustic features are mean- and variance-normalized
13-dimensional mel-frequency cepstral coefficients (MFCCs)
and their first and second derivatives computed every 10ms
over a 25ms window. The articulatory measurements are
downsampled to match the MFCC frame rate.

The input features to CCA/KCCA are the acoustic and
articulatory features concatenated over a 7-frame window
around each frame, giving acoustic vectors X ∈ R273×N and
articulatory vectors Y ∈ R112×N , where N is the number of
frames (∼ 50, 000 per speaker). (Shorter windows produce
worse results; longer windows may further improve results.)

For domain-independence experiments, we also use
one speaker (msak0) from the MOCHA-TIMIT acoustic-
articulatory database [6] and the TIMIT database [30]. The
acoustic parameterization is the same. For MOCHA-TIMIT,
the articulatory measurements consist of 7 tracks of pellets on

the speaker’s lower and upper lips; lower incisor; tongue tip,
body, and dorsum; and velum. The MOCHA articulatory data
is 98-dimensional after stacking over a 7-frame window.

3.1. Speaker-dependent phonetic recognition

We first explore the performance of phonetic recognition
using baseline and transformed CCA/KCCA-based acoustic
features in a speaker-dependent setting. In particular, we
train and test CCA and KCCA transformations on data from
each of the four XRMB speakers. Since the XRMB data
sets are relatively small and there are several repeated utter-
ances, a phonetic language model learned on XRMB would
be too artificial; instead, we use a bigram phonetic language
model learned on TIMIT data. For KCCA, we use radial
basis function (RBF) kernels for both views, kx(xi, xj) =

e−‖xi−xj‖2/2σ2
x and similarly for ky .

We use a five-fold experimental setup: We run five inde-
pendent experiments, each using 60% of the utterances for
learning projections and HMM/GMM parameters, 20% for
tuning (development), and 20% for final testing. The error
rates we report are averages over the five non-overlapping test
sets. We tune all hyper-parameters (dimensionality k, regu-
larization parameters rx, ry , number of Gaussians, language
model penalty and scale) independently on each development
set. Kernel bandwidths are fixed at σx=4×106, σy = 2×104
(based on the variance of the data in each view). The inter-
mediate dimensionality m in KCCA is fixed at 500.

As in previous work [17, 18], performance is better when
concatenating the CCA-based projections with the baseline
MFCCs, rather than using the CCA-based projections alone.
Intuitively, there is discriminative information in the MFCCs
that is not correlated with the articulatory data (e.g., voicing
and nasality, which is missing in XRMB). Here we report
only results with CCA and KCCA projections concatenated
with the baseline MFCCs, which we refer to as “MFCCA”
(MFCC+CCA) and “KMFCCA” (MFCC+KCCA).

The first four lines of Table 1 show speaker-dependent
phonetic recognition results for each of the four XRMB
speakers. In all cases, MFCCA improves over the baseline
MFCCs by 4.5-8% absolute, and KMFCCA improves upon
that by another 0.8-3.5% absolute. We also compare to un-
supervised dimensionality reduction with PCA. While PCA
over the 7-frame windows does improve over the baseline
39-dimensional MFCCs, the CCA-based projections still im-
prove over PCA by several percent for all speakers.

3.2. Speaker-independence

To test the degree of speaker-independence of the CCA
and KCCA projections, we next repeat the above exper-
iments, but learn the projections on three of the XRMB
speakers (“source” speakers) and test on the fourth (“tar-
get” speaker). The HMM/GMM decoder is still learned on
the target speaker, so that we only measure the speaker-
independence of the features and not of the statistical model.



corpus XRMB
test set JW11 JW30 JW13 JW24

baseline MFCC 40.5 39.0 31.3 39.0
speaker- PCA 37.8 37.2 33.6 36.0
dep MFCCA 35.4 34.8 26.8 31.0

KMFCCA 31.9 33.0 26.0 30.2
cross- MFCCA 37.5 38.4 27.3 32.6
speaker KMFCCA 32.9 34.9 26.3 30.1

Table 1. Phonetic recognition error rates (in %) on XRMB
speakers (averaged over five test sets for each speaker).

corpus MOCHA msak0 TIMIT
test set dev test dev test

baseline MFCC 41.4 42.3 33.3 33.6
domain-dep MFCCA 39.9 41.2 N/A N/A
cross-dom MFCCA 39.7 40.9 32.5 33.3

Table 2. Phonetic recognition error rates (in %) on MOCHA
msak0 and the TIMIT multi-speaker dev/test sets.

The CCA/KCCA dimensionality is also tuned on the tar-
get speaker’s development data; i.e., we learn an entire full-
dimensional set of projections on the source speakers, and
then choose which subset of the projections will be used on
the new speaker. The results are shown in Table 1, averaged
over the same five test sets for each speaker as before.

The phone recognition performance is very similar for the
speaker-dependent and speaker-independent settings. This
suggests that features learned using CCA/KCCA are speaker-
independent. This is very encouraging, considering that no
cross-speaker normalization or adaptation has been done. In
order to make sure that we are not benefiting from the in-
creased amount of training data in the speaker-independent
cases, we randomly subsampled by a factor of three to match
the training set size to that of the speaker-dependent setting.

3.3. Domain-independence
For cross-domain experiments, we choose one set of CCA
directions learned on three XRMB speakers (JW11, JW24,
JW30) and test them on a speaker (msak0) from the MOCHA-
TIMIT corpus and on the multi-speaker full test set of TIMIT.
In the case of MOCHA-TIMIT, the dialect is British English,
whereas in XRMB and TIMIT it is American English. The
HMM/GMM decoder is trained, and the CCA dimensional-
ity tuned, on development data in the target domain, so that
we are only testing the portability of the acoustic projections
across domains. We decode with a bigram phone language
model estimated from training data in these domains.

Table 2 gives the results on MOCHA-TIMIT and TIMIT.
We include both development and test set results to show the
effect of tuning. For MOCHA-TIMIT, we define a 5-fold
experimental setup analogously to the XRMB experiments.
For TIMIT, we train on the standard training set, tune on a

held-out set of 50 speakers across dialect regions (similarly
to [31]), and test on the full test set. For MOCHA-TIMIT,
Table 2 also includes in-domain speaker-dependent results.

For MOCHA, in-domain MFCCA gives an improvement
of 1.1% absolute and cross-domain (learned on XRMB)
MFCCA gives an improvement of 1.4% absolute on the test
set. For TIMIT, cross-domain MFCCA gives an improvement
of 0.8% on the development set and 0.3% on the test set.

Interestingly, then, the effect of CCA-based features
is much smaller on MOCHA-TIMIT and TIMIT than on
XRMB, including the domain-dependent MOCHA-TIMIT
case. We hypothesize that this is because the language model
is much stronger for these corpora, dwarfing the effect of
the acoustic transformations. To test this hypothesis, we
also measured phonetic frame classification error rates on
MOCHA-TIMIT, using a k-nearest neighbor classifier. On
this task, the transformed acoustic features do improve the er-
ror rate by 5− 6.5% absolute over the baseline MFCCs (from
46.6% baseline frame error to 41.5% with domain-dependent
MFCCA and 40.1% with cross-domain MFCCA). These are
similar improvements to those we have seen on XRMB [18].
Therefore, on MOCHA-TIMIT there is a large gap between
frame classification and phonetic recognition, lending support
to our hypothesis that the language model accounts for the
difference. It will therefore be interesting to consider other,
more realistic corpora and tasks in the future.

4. CONCLUSION

Our results show that CCA-based acoustic features learned
using articulatory measurements are useful for phonetic
recognition, are largely speaker-independent, and also are
domain-independent to some extent. This extends previous
attempts to use multi-view learning of features that were lim-
ited to phonetic frame classification and to speaker-dependent
experiments. This also takes us a step closer to the pursuit of
an improved generic front-end for speech recognition using
additional measurements available only at training time and
only for some limited corpora. We leave for future work a
more thorough comparison of CCA-based features with other
unsupervised transformations besides PCA (e.g., [32]).

Our experiments thus far have not considered speaker or
domain adaptation. It is plausible that the coordinate system
of the most correlated subspace between acoustics and artic-
ulation may differ across speakers and domains, and that a
combination of multi-view learning and unsupervised adap-
tation may provide additional gains. We have also not yet
explored the full KCCA tuning space, including alternative
kernels and regularizers [33], nor alternative input features
besides MFCCs. Finally, additional future work will study
whether the gains apply to more complex tasks such as word
recognition, as well as extensions based on views other than
articulatory tracks (video [34], EMG [35], MRI [36], ultra-
sonic signals [37], etc.) and based on semi-supervised exten-
sions combining multiple signal views as well as labels [38].
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