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ABSTRACT
In this work we consider online decision-making in settings where

players want to guard against possible adversarial attacks or other

catastrophic failures. To address this, we propose a solution concept

in which players have an additional constraint that at each time step

they must play a diversified mixed strategy: one that does not put

too much weight on any one action. This constraint is motivated by

applications such as finance, routing, and resource allocation, where

one would like to limit one’s exposure to adversarial or catastrophic

events while still performing well in typical cases. We explore prop-

erties of diversified strategies in both zero-sum and general-sum

games, and provide algorithms for minimizing regret within the

family of diversified strategies as well as methods for using taxes

or fees to guide standard regret-minimizing players towards diver-

sified strategies. We also analyze equilibria produced by diversified

strategies in general-sum games. We show that surprisingly, requir-

ing diversification can actually lead to higher-welfare equilibria,

and give strong guarantees on both price of anarchy and the social

welfare produced by regret-minimizing diversified agents. We addi-

tionally give algorithms for finding optimal diversified strategies in

distributed settings where one must limit communication overhead.
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1 INTRODUCTION
A common piece of advice when one needs to make decisions in the

face of unknown future events is “Don’t put all your eggs in one bas-

ket.” This is especially important when there can be an adversarial

attack or catatrophic failure. We consider game-theoretic problems

from this perspective, design online learning algorithms with good

performance subject to such exposure-limiting constraints on be-

havior, and analyze the effects of these constraints on the expected

value obtained (in zero-sum games) and the overall social welfare

produced (in general-sum games).

As an example, consider a standard game-theoretic scenario: an

agent must drive from point A to point B and hasn different routes it

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

can take. We could model this as a gameM where rows correspond

to the n routes, columns correspond tom possible traffic patterns,

and entryM(i, j) is the cost for using route i under traffic pattern j .
However, suppose the agent is carrying valuable documents and

is concerned an adversary might try to steal them. In this case,

to reduce the chance of this happening, we might require that no

route have more than (say) 10% probability. The agent then wants

to minimize expected travel time subject to this requirement. Or in

an investment scenario, if rows correspond to different investments

and columns to possible market conditions, we might have an

additional worry that perhaps one of the investment choices is run

by a crook. In this case, we may wish to restrict the strategy space

to allocations of funds that are not too concentrated.

To address such scenarios, for ϵ ∈ [ 1

n , 1] let us define a probabil-

ity distribution (or allocation) P to be ϵ-diversified if P(i) ≤ 1

ϵn for

all i . For example, for ϵ = 1

n this is no restriction at all, for ϵ = 1

this requires the uniform distribution, and for intermediate values

of ϵ this requires an intermediate level of diversification. We then

explore properties of such diversified strategies in both zero-sum

and general-sum games as well as give algorithmic guarantees.

For zero-sum games, define vϵ to be the minimax-optimal value

of the game in which the row player is restricted to playing ϵ-
diversified mixed strategies. Natural questions we address are: Can

one design adaptive learning algorithms that maintain ϵ-diversified
distributions and minimize regret within this class so they never

perform much worse than vϵ ? Can a central authority “nudge”

a generic non-diversified regret-minimizer into using diversified

strategies via fines or taxes (extra loss vectors strategically placed

into the event stream) such that it maintains low-regret over the

original sequence? And for reasonable games, how much worse

is vϵ compared to the non-diversified minimax value v? We also

consider a dual problem of producing a strategy Q for the column

player that achieves value vϵ against all but an ϵ fraction of the

rows (which an adversary can then aim to attack).

One might ask why not model such an adversary directly within

the game, via additional columns that each give a large loss to one

of the rows. The main reason is that these would then dominate

the minimax value of the game. (And they either would not have

values within the usual [0, 1] range assumed by regret-minimizing

learners, or, if they were scaled to lie in this range, they would

cause all other events to seem roughly the same). Instead, we want

to consider learning algorithms that optimize for more common

events, while keeping to the constraint of maintaining diversified

strategies. We also remark that one could also make diversification

a soft constraint by adding a loss term for not diversifying.

We next consider general-sum games, such as routing games

and atomic congestion games, in which k players interact in ways

that lead to various costs being incurred by each player. We show



that surprisingly, requiring a player to use diversified strategies

can actually improve its performance in equilibria in such games.

We then study the ϵ-diversified price of anarchy: the ratio of the

social cost of the worst equilibrium subject to all players being ϵ-
diversified to the social cost of the socially-best set of ϵ-diversified
strategies. We show that in some natural games, even requiring a

small amount of diversification can dramatically improve the price

of anarchy of the game, though we show there also exist games

where diversification can make the price of anarchy worse. We also

bring several threads of this investigation together by showing that

for the class of smooth games defined by Roughgarden [25], for any

diversification parameter ϵ ∈ [ 1

n , 1], the ϵ-diversified price of anar-

chy is no worse than the smoothness of the game, and moreover,

players using diversified regret-minimizing strategies will indeed

approach this bound. Thus, we get strong guarantees on the quality

of interactions produced by self-interested diversified play. Finally,

we consider how much diversification can hurt optimal play, show-
ing that in random unit-demand congestion games, diversification

indeed incurs a low penalty.

Lastly, we consider an information-limited, distributed, “big-data”

setting in which the number of rows and columns of the matrixM is

very large and we do not have it explicitly. Specifically, we assume

the n rows are distributed among r processors, and the only access

to the matrix M we have is via an oracle for the column player

that takes in a sample of rows and outputs the column player’s

best response. What we show is how in such a setting to produce

near optimal strategies for each player in the sense described above,

from very limited communication among processors.

In addition to our theoretical results, we also present experimen-

tal simulations for both zero-sum and general-sum games.

1.1 Related Work
There has been substantial work on design of “no-regret” learn-

ing algorithms for repeated play of zero-sum games [7, 10, 15].

Multiplicative Weight Update methods [2, 21] are a specific type of

no-regret algorithm that have received considerable attention in

game theory [15, 16], machine learning [11, 15], and many other

research areas [1, 20], due to their simplicity and elegance.

We consider the additional constraint that players play diversi-

fied mixed strategies, motivated by the goal of reducing exposure

to adversarial attacks. The concept of diversified strategies, some-

times called “smooth distributions”, appears in a range of different

areas [12, 17, 20]. [9] considers a somewhat related notion where

there is a penalty for deviation from a given fixed strategy, and

shows existence of equilibria in such games. Also related is work

on adversarial machine learning, e.g., [13, 18, 27]; however, in this

work we are instead focused on decision-making scenarios.

Our distributed algorithm is inspired by prior work in distributed

machine learning [4, 11, 14], where the key idea is to performweight

updates in a communication efficient way. Otherwork on the impact

of adversaries in general-sum games appears in [3, 5, 6].

2 ZERO-SUM GAMES
We begin by studying two-player zero-sum games. Recall that a

two-player zero-sum game is defined by a n ×m matrixM . In each

round of the game, the row player chooses a distribution P over the

Algorithm 1 Multiplicative Weights Update algorithm with Re-

stricted Distributions

Initialization: Fix a γ ≤ 1

2
. Set P (1) to be the uniform distribu-

tion.

for t = 1, 2, . . . ,T do
(1) Choose distribution P (t )

(2) Receive the pure strategy jt for the column player

(3) Compute the multiplicative update rule

P̂
(t+1)

i = P
(t )
i (1 − γ )M (i, jt )/Z (t )

where Z (t ) =
∑
i P

(t )
i (1 − γ )M (i, jt )

is the normalization

factor.

(4) Project P̂ (t+1)
into Pϵ

P (t+1) = arg min

P ∈Pϵ
RE(P ∥ P̂ (t+1))

end for

rows of M , and the column player chooses a distribution Q over

the columns ofM . The expected loss of the row player is

M(P ,Q) = PTMQ =
∑
i, j

P(i)M(i, j)Q(j),

where M(i, j) ∈ [0, 1] is the loss suffered by the row player if the

row player plays row i and the column player plays column j. The
goal of the row player is to minimize its loss, and the goal of the

column player is to maximize this loss. The minimax value v of the

game is:

v = min

P
max

Q
M(P ,Q) = max

Q
min

P
M(P ,Q).

2.1 Multiplicative Weights and Diversified
Strategies

We now consider row players restricted to only playing diversified

distributions, defined as follows.

Definition 2.1. A distribution p ∈ ∆n is called ϵ-diversified if

maxi pi ≤
1

ϵn .

Let Pϵ be the set of all ϵ-diversified distributions, and let vϵ be

the minimax value of the game subject to the row player restricted

to playing in Pϵ . Note that the range of ϵ is between 1/n and 1. It

is easy to verify that Pϵ is a convex set. As a result, the minimax

theorem applies to Pϵ [26], and we call the minimax value vϵ :

vϵ = min

P ∈Pϵ
max

Q
M(P ,Q) = max

Q
min

P ∈Pϵ
M(P ,Q).

The multiplicative weights update algorithm [19, 21] can be

naturally adapted to maintain diversified strategies by projecting

its distributions into the class Pϵ if they ever step outside of it. This

is shown in Algorithm 1. By adapting the analysis of [19] to this

case, we arrive at the following regret bound.

Theorem 2.2. For any 0 < γ ≤ 1/2 and any positive integer T ,
Algorithm 1 generates distributions P (1), . . . , P (T ) ∈ Pϵ to responses
j1, . . . , jT , such that for any P ∈ Pϵ ,∑T

t=1
M(P (t ), jt ) ≤ (1 + γ )

∑T
t=1

M(P , jt ) +
RE(P ∥P (1))

γ ,

where RE(p ∥ q) =
∑
i pi ln(pi/qi ) is relative entropy.



By combining Algorithm 1 with a best-response oracle for the

column player, and applying Theorem 2.2 and a standard argument

[2, 16] we have:

Theorem 2.3. Running Algorithm 1 for T steps against a best-
response oracle, one can construct mixed strategies P̄ and Q̄ s.t.

max

Q
M(P̄ ,Q) ≤ vϵ + ∆T and min

P ∈Pϵ
M(P , Q̄) ≥ vϵ − ∆T ,

for ∆T = 2

√
ln(1/ϵ )
T , where P̄ = 1

T
∑T
t=1

P (t ) and Q̄ = 1

T
∑T
t=1

jt .

Proof. We can sandwich the desired inequalities inside a proof

of the minimax theorem as follows:

min

P ∈Pϵ
max

Q
M(P ,Q) ≤ max

Q
M(P̄ ,Q) = max

Q

1

T

T∑
t=1

M(P (t ),Q)

≤
1

T

T∑
t=1

max

Q
M(P (t ),Q) =

1

T

T∑
t=1

M(P (t ), jt )

≤ min

P ∈Pϵ

1 + γ

T

T∑
t=1

M(P , jt ) +
ln(1/ϵ)

γT

≤ min

P ∈Pϵ
M(P , Q̄) + γ +

ln(1/ϵ)

γT

≤ max

Q
min

P ∈Pϵ
M(P ,Q) + γ +

ln(1/ϵ)

γT

If we set γ =

√
ln(1/ϵ )
T , then ∆T = γ +

ln(1/ϵ )
γT = 2

√
ln(1/ϵ )
T . The two

inequalities in the theorem follow by skipping the first and the last

inequalities from the proof above, respectively. □

The next theorem shows that the distribution Q̄ in Theorem 2.3

is also a good mixed strategy for the column player against any

row-player strategy if we remove a small fraction of the rows.

Theorem 2.4. By running Algorithm 1 for T steps against a best-
response oracle, we can construct a mixed strategy Q̄ such that for all
but an ϵ fraction of the rows i ,M(i, Q̄) ≥ vϵ −γ . Moreover we can do

this with at most T = O
(

log(1/ϵ )
γ 2(1+γ−vϵ )

)
oracle calls.

Proof. We generate distributions P (1), . . . , P (T ) ∈ Pϵ by using

Algorithm 1. Let jt be the column returned by the oracle with the

input P (t ). After T =
⌈

log(1/ϵ )
γ 2(1+γ−vϵ )

⌉
+ 1 rounds, we set the mixed

strategy Q̄ = 1

T
∑T
t=1

jt . Set E = {i |M(i, Q̄) < vϵ − γ }. Suppose for
contradiction that |E | ≥ ϵn. Let P = uE , the uniform distribution

on E and 0 elsewhere. It is easy to see that uE ∈ Pϵ , since |E | ≥ ϵn.

By the assumption of the oracle, we havevϵT ≤
∑T
t=1

M(P (t ), jt ).
In addition, by Theorem 2.2, we have

T∑
t=1

M(P (t ), jt ) ≤ (1 + γ )
T∑
t=1

M(P , jt ) +
RE(P ∥ P (1))

γ
.

For any i ∈ E,
∑T
t=1

M(i, jt ) = T · M(i, Q̄) < (vϵ − γ )T . Since P is

the uniform distribution on E, we have
∑T
t=1

M(P , jt ) < (vϵ − γ )T .
Furthermore, since |E | ≥ ϵn, we have

RE(P ∥ P (1)) = RE(uE ∥ u) ≤ ln(1/ϵ).

Algorithm 2 Multiplicative Weights Update algorithm with Inter-

ventions

Initialization: Fix a γ ≤ 1

2
. Set P (1) to be the uniform distribu-

tion.

for t = 1, 2, . . . ,T do
(1) Choose distribution P (t )

(2) Receive the pure strategy jt for the column player

(3) Compute the multiplicative update rule

P
(t+1)

i = P
(t )
i (1 − γ )M (i, jt )/Z (t )

where Z (t ) =
∑
i P

(t )
i (1 − γ )M (i, jt )

is the normalization

factor.

(4) While P (t+1)
is not (1 − γ )ϵ-diversified, run multiplica-

tive update (Step 3) on fake loss vector ℓ defined as:

ℓi =
 1 if P

(t+1)

i > 1

(1−γ )ϵn

0 if P
(t+1)

i ≤ 1

(1−γ )ϵnend for

Putting these facts together, we getvϵT ≤ (1+γ )(vϵ −γ )T +
ln(1/ϵ )

γ ,

which implies T ≤
ln(1/ϵ )

γ 2(1+γ−vϵ )
, a contradiction. □

2.2 Diversifying Dynamics
Theorem 2.2 shows that it is possible for a player to maintain an ϵ-
diversified distribution at all times while achieving low regret with

respect to the entire family Pϵ of ϵ-diversified distributions. How-

ever, suppose a player, who is allocating an investment portfolio

amongn investments, does not recognize the need for maintaining a

diversified distribution and simply uses the standard multiplicative-

weights algorithm tominimize regret. For example, the player might

not realize that the matrixM only represents “typical” behavior of

investments, and that a crooked portfolio manager or clever hacker

could cause an entire investment to be wiped out. This player might

quickly reach a dangerous non-diversified portfolio in which nearly

all of its weight is just on one row.

Suppose, however, that an investment advisor or helpful author-

ity has the ability to charge fees on actions whose weights are too

high, that can be viewed as inserting fake loss vectors into the

stream of loss vectors observed by the player’s algorithm. We show

here that by doing so in an appropriate manner, this advisor or

authority can ensure that the player both (a) maintains diversified

distributions, and (b) incurs low regret with respect to the family

Pϵ over the sequence of real loss vectors. Viewed another way, this

can be thought of as an alternative to Algorithm 1 with slightly

weaker guarantees but that does not require the projection. The

algorithm remains efficient.

Theorem 2.5. Algorithm 2 generates distributions P (1), . . . , P (T )

such that

(a) P (t ) ∈ P(1−γ )ϵ for all t , and

(b) for any P ∈ Pϵ we have

T∑
t=1

M(P (t ), jt ) ≤ (1 + γ )
T∑
t=1

M(P , jt ) +
RE(P ∥ P (1))

γ
.



Proof. For part (a) we just need to show that the while loop

in Step 4 of the algorithm halts after a finite number of loops. To

show this, we show that each time a fake loss vector is applied, the

gap between the maximum and minimum total losses (including

both actual losses and fake losses) over the rows i is reduced. In
particular, the multiplicative-weights algorithm has the property

that the probability on an action i is proportional to (1 − γ )L
i
total

where Litotal is the total loss (actual plus fake) on action i so far;

so, the actions of highest probability are also the actions of lowest

total loss. This means that in Step 4, there exists some threshold τ
such that ℓi = 1 for all i of total loss at most τ and ℓi = 0 for all i of
total loss greater than τ . Since we are adding 1 to those actions of

total loss at most τ , this means that the gap between the maximum

and minimum total loss over all the actions is decreasing, so long

as that gap was greater than 1. However, note that if P (t+1)
is not

(1 − γ )ϵ-diversified then the gap between maximum and minimum

total loss must be greater than 1, by definition of the update rule

and using the fact that ϵ ≤ 1. Therefore, the gap between maximum

and minimum total loss is strictly reduced on each iteration (and

reduced by at least 1 if any row is ever updated twice) until P (t+1)

becomes (1 − γ )ϵ-diversified.

For part (b), define L
alд
actual =

∑T
t=1

M(P (t ), jt ) to be the actual

loss of the algorithm and define LPactual =
∑T
t=1

M(P , jt ) to be

the actual loss of some ϵ-diversified distribution P . We wish to

show that L
alд
actual is not too much larger than LPactual . To do so,

we begin with the fact that, by the usual multiplicative weights

analysis, the algorithm has low regret with respect to any fixed

strategy over the entire sequence of loss vectors (actual and fake).

Say the algorithm’s total loss is L
alд
total = L

alд
actual + L

alд
f ake and the

total loss of P is LPtotal = LPactual + L
P
f ake . We know that

L
alд
total ≤ (1 + γ )LPtotal +

RE(P ∥P (1))
γ ,

which we can rewrite as:

L
alд
actual + L

alд
f ake ≤ (1 + γ )LPactual + (1 + γ )L

P
f ake +

RE(P ∥P (1))
γ .

Thus, to prove part (b) it suffices to show that L
alд
f ake ≥ (1+γ )LPf ake .

But notice that on each fake loss vector, for each index i such

that ℓi = 1, the algorithm has strictly more than
1

(1−γ )ϵn >
1+γ
ϵn

probability mass on row i . In contrast, P has at most
1

ϵn probability

mass on row i , since P is ϵ-diversified. Therefore L
alд
f ake ≥ (1 +

γ )LPf ake and the proof is complete. □

This analysis can be extended to the case of an advisor who only

periodically monitors the player’s strategy. If the advisor monitors

the strategy every k steps, then in the meantime the maximum

probability that any row i can reach is
1

(1−γ )k ϵn
. So, part (a) of

Theorem 2.5 would need to be relaxed to P (t ) ∈ P(1−γ )k ϵ . However,

part (b) of Theorem 2.5 holds as is.

2.3 How close is vϵ to v?
Restricting the row player to play ϵ-diversified strategies can of

course increase its minimax loss, i.e., vϵ ≥ v . In fact, it is not hard

to give examples of games where the gap is quite large. For example,

suppose the row player has one action that always incurs loss 0,

and the remaining n − 1 actions always incur loss 1 (whatever the

column player does). Then v = 0 but for ϵ ∈ [ 1

n , 1], vϵ = 1 − 1

ϵn .

However, we show here that for random matrices M , the gap

between the two is quite small. I.e., the additional loss incurred due

to requiring diversification is low. A related result, in a somewhat

different model, appears in [22].

Theorem 2.6. Consider a random n × n gameM where each en-
tryM(i, j) is drawn i.i.d. from some distribution D over [0, 1]. With

probability ≥ 1 − 1

n , for any ϵ ≤ 1, we have vϵ −v = O
(√

logn
n

)
.

Proof. Let µ = Ex∼D [x] be the mean of distribution D. We

will show that v and vϵ are both close to µ. To argue this, we

will examine the value of the uniform distribution P
unif

for the

row player, and the value of the uniform distribution Q
unif

for

the column player. In particular, notice that v ≥ mini M(i,Q
unif

)

becauseQ
unif

is just one possible strategy for the column player, and

by definition, v = mini M(i,Q∗) where Q∗
is the minimax optimal

strategy for the column player, and the row player’s loss underQ∗
is

greater than or equal to the row player’s loss under Q
unif

since the

column player is trying to maximize the row player’s loss. Similarly,

vϵ ≤ maxj M(P
unif
, j) since P

unif
is just one possible diversified

strategy for the row player, and by definition vϵ = maxj M(P∗, j)
where P∗ is the minimax optimal diversified strategy for the row

player and the row player is trying to minimize loss. So, we have

min

i
M(i,Q

unif
) ≤ v ≤ vϵ ≤ max

j
M(P

unif
, j).

Thus, if we can show that with high probability mini M(i,Q
unif

)

and maxj M(P
unif
, j) are both close to µ, then this will imply that v

and vϵ are close to each other.

Let us begin with P
unif

. Notice thatM(P
unif
, j) is just the average

of the entries in the jth column. So, by Hoeffding bounds, there

exists a constant c such that for any given column j,

Pr

[
M(P

unif
, j) > µ + c

√
logn
n

]
≤ 1

2n2
,

where the probability is over the random draw ofM . By the union

bound, with probability at least 1 − 1

2n , this inequality holds simul-

taneously for all columns j. Since P
unif

is ϵ-diversified, as noted

above this implies that vϵ ≤ µ + c
√
(logn)/n with probability at

least 1 − 1

2n .

On the other hand, by the same reasoning, with probability at

least 1 − 1

2n the uniform distribution Q
unif

for the column player

has the property that for all rows i , M(i,Q
unif

) ≥ µ − c

√
logn
n .

This implies as noted above that v ≥ µ − c

√
logn
n . Therefore, with

probability at least 1 − 1

n , vϵ −v ≤ 2c

√
logn
n as desired. □

3 GENERAL-SUM GAMES
We now consider k-player general-sum games. Instead of minimax

optimality, the natural solution concept now is a Nash equilibrium.

We begin by showing that unlike zero-sum games, it is now possible

for the payoff of a player at equilibrium to actually be improved

by requiring it to play a diversified strategy. This is a bit peculiar

because constraining a player is actually helping it.



We then consider the relationship between the social cost at

equilibrium and the optimal social cost, when all players are re-

quired to use diversified strategies. We call the ratio of these two

quantities the diversified price of anarchy of the game, in analogy to

the usual price of anarchy notion when there is no diversification

constraint. We show that in some natural games, even requiring a

small amount of diversification can significantly improve the price

of anarchy of the game, though there also exist games where diver-

sification can make the price of anarchy worse. Finally, we bring

several threads of this investigation together by showing that for

the class of smooth games defined by Roughgarden [25], for any

diversification parameter ϵ ∈ [ 1

n , 1], the ϵ-diversified price of anar-

chy is no worse than the smoothness of the game, and moreover

that players using diversified regret-minimizing strategies (such as

those in Sections 2.1 and 2.2) will indeed approach this bound.

3.1 The Benefits of Diversification
First, let us formally define the notion of a Nash equilibrium subject
to a (convex) constraint C, where C could be a constraint such as

“the row player must use an ϵ-diversified strategy”.

Definition 3.1. A set of mixed strategies (P1, . . . , Pk ) is a Nash
equilibrium subject to constraint C if no player can unilaterally

deviate to improve its payoff without violating constraint C. We

will just call this a Nash equilibrium when C is clear from context.

We now consider the case of k = 2 players, and examine how

requiring the row player to diversify can affect its payoff at equi-

librium. For zero-sum games, the value vϵ was always no better

than the minimax value v of the game, since constraining the row

player can never help it. We show here that this is not the case for

general-sum games: requiring a player to use a diversified strategy

can in some games improve its payoff at equilibrium.

Theorem 3.2. There exist 2-player general-sum games for which
a diversification constraint on the row player lowers the row player’s
payoff at equilibrium, and games for which such a constraint increases
the row player’s payoff at equilibrium.

Proof. Consider the following two bimatrix games (entries here

represent payoffs rather than losses):

Game A :

2, 2 1, 1

1, 1 0, 0
Game B :

1, 1 3, 0

0, 0 1, 3

In Game A, the unique Nash equilibrium has payoff of 2 to each

player, and requiring the row player to be diversified strictly lowers

both player’s payoffs. On the other hand, diversification helps the

row player in Game B. Without a diversification constraint, in Game

B the row player will play the top row and the column player will

therefore play the left column, giving both players a payoff of 1.

However, requiring the row-player to put probability
1

2
on each row

will cause the column player to choose the right column, giving the

row player a payoff of 2 and the column player a payoff of 1.5. □

Routing games [24] are an interesting class of many-player

games where requiring all players to diversify can actually im-

prove the quality of the equilibrium for everyone. An example is

Braess’ paradox [8] shown in Figure 1. In this example, k players

need to travel from s to t and wish to take the cheapest route. Edge

𝑏

𝑠

𝑎

𝑡

1

0

1

𝑘𝑠,𝑎/𝑘

𝑘𝑏,𝑡/𝑘

Figure 1: Braess’ paradox.Here,k playerswish to travel from
s to t , and requiring all players to use diversified strategies
improves the quality of the equilibrium for everyone.

costs are given in the figure, where ke is the number of players us-

ing edge e . At Nash equilibrium, all players choose the route s-a-b-t
and incur a cost of 2. However, if they must put equal probability

on the three routes they can choose from, the expected cost of each

player approaches only
1

3
( 2

3
+ 1) + 1

3
( 2

3
+ 2

3
) + 1

3
(1 + 2

3
) = 1 + 5

9
.

Thus, even though from an individual player’s perspective, diversi-

fication is a restriction that increases robustness at the expense of

higher average loss, overall, diversification can actually improve

the quality of the resulting equilibrium state. In the next section,

we discuss the social cost of diversified equilibria in many-player

games in more detail, analyzing what we call the diversified price of
anarchy as well as the social cost that results from all players using

diversified regret-minimizing strategies.

3.2 The Diversified Price of Anarchy
We now consider structured general-sum games with k ≥ 2 players.

In these games, each player i chooses some strategy si from a strat-

egy space Si . The combined choice of the players s = (s1, . . . , sk ),
which we call the outcome, determines the cost that each player

incurs. Specifically, let costi (s) denote the cost incurred by player i

under outcome s, and let cost(s) =
∑k
i=1

costi (s) denote the overall
social cost of s. Let s∗ = argminscost(s), i.e., the outcome of opti-

mum social cost. The price of anarchy of a game is defined as the

maximum ratio cost(s)/cost(s∗) over all Nash equilibria s. A low

price of anarchy in a game means that all Nash equilibria have

social cost that is not too much worse than the optimum. We can

analogously define the ϵ-diversified price of anarchy:

Definition 3.3. Let s∗ϵ denote the outcome of optimum social cost

subject to each player choosing an ϵ-diversified strategy. The ϵ-
diversified price of anarchy is the maximum ratio cost(sϵ )/cost(s∗ϵ )
over all outcomes sϵ that are Nash equilibria subject to all players

playing ϵ-diversified strategies.

Note that for any game, the 1-diversified price of anarchy equals

1, because players are all required to play the uniform distribution.

This suggests that as we increase ϵ , the ϵ-diversified price of anarchy
should drop, though as we show, in some games it is not monotone.

Examples. In consensus games, each player i is a distinct node in
ak-node graphG . Players each choose one of two colors, red or blue,



and the cost of player i is the number of neighbors it has of color

different from its own. The social cost is the sum of the players’

costs, and to keep ratios finite we add 1 to the total. The optimal s∗

is either “all blue” or “all red” in which each player has a cost of 0, so

the social cost is 1. However, if the graph is a complete graph minus

a matching, then there exists an equilibrium in which half of the

players choose red and half the players choose blue. Each player has

k
2
− 1 red neighbors and

k
2
− 1 blue neighbors, so the social cost of

this equilibrium is Θ(k2). This means the price of anarchy is Θ(k2).

However, if we require players to play ϵ-diversified strategies for

any constant ϵ > 1

2
(i.e., they cannot play pure strategies), then for

anym-edge graph G, even the optimum outcome has cost Ω(m)

since every edge has a constant probability of contributing to the

cost. So the diversified price of anarchy is O(1).
As another example, consider atomic congestion games [23]. Here,

we have a set R of resources (e.g., edges in a graphG) and each player
i has a strategy set Si ⊆ 2

R
(e.g., all ways to select a path between

two specified vertices in G). The cost incurred by a player is the

sum of the costs of the resources it uses (the cost of its path). Each

resource j has a cost function c j (kj ) where kj is the number of

players who are using resource j. The cost functions c j could be

increasing, such as in packet routing where latency increases with

the number of users of an edge, or decreasing, such as players

splitting the cost of a shared printer. When examining diversified

strategies, we sometimes view players as making fractional choices,

such as sending half their packets down one path and half of them

down another. The quantity kj then denotes the total fractional

usage of resource j (or equivalently, the expected number of users

of that resource).

Non-monotonicity. An example of an atomic congestion game

where some diversification can initially increase the price of anar-

chy is the following. Suppose there are four resources, and each

player just needs to choose one of them. The costs of the resources

behave as follows:

c1(k1) = 1, c2(k2) = 5, c3(k3) = 6/k3, c4(k4) = 6/k4.

Assume the total number of players k is at least 13. The optimal

outcome s∗ is for all players to choose resource 3 (or all choose

resource 4) for a total social cost of 6. The optimal ϵ-diversified
outcome for ϵ = 1

2
(i.e., each player can put weight at most

1

2
on

any given resource) is for all players to put half their weight on

strategy 3 and half their weight on strategy 4, for a total cost of 12.

The worst Nash equilibrium is for all players to choose strategy 1,

for a total cost of k , giving a price of anarchy of k/6. However if we

require players to be ϵ-diversified for ϵ = 1

2
, there is now a worse

equilibriumwhere each player puts half its weight on strategy 1 and

half its weight on strategy 2, for a total cost of 3k and a diversified

price of anarchy of 3k/12 = k/4. So, increasing ϵ from
1

4
up to

1

2

increases the price of anarchy, and then increasing ϵ further to 1

will then decrease the price of anarchy to 1.

3.2.1 General Bounds. We now present a general bound on the

diversified price of anarchy for games, as well as for the social

welfare when all players use diversified regret-minimizing strate-

gies such as given in Sections 2.1 and 2.2, using the smoothness

framework of Roughgarden [25].

Definition 3.4. [25] A general-sum game is (λ, µ)-smooth if for

any two outcomes s and s∗,

k∑
i=1

costi (s
∗
i , s−i ) ≤ λ cost(s∗) + µ cost(s).

Here, (s∗i , s−i )means the outcome in which player i plays its action
in s∗ but all other players play their action in s.

Theorem 3.5. If a game is (λ, µ)-smooth, then for any ϵ , the ϵ-
diversified price of anarchy is at most λ

1−µ .

Proof. Let s = sϵ be some Nash equilibrium subject to all play-

ers playing ϵ-diversified strategies, and let s∗ = s∗ϵ be an outcome

of optimum social cost subject to all players choosing ϵ-diversified
strategies. Since s is an equilibrium, no player wishes to deviate to

their action in s∗; here we are using the fact that s∗ includes only ϵ-
diversified strategies, so such a deviation would be legal. Therefore

cost(s) ≤
∑k
i=1

costi (s
∗
i , s−i ) ≤ λ cost(s∗) + µ cost(s). Rearranging,

we have (1 − µ)cost(s) ≤ λ cost(s∗), so cost(s)/cost(s∗) ≤ λ
1−µ . □

Roughgarden [25] shows that atomic congestion games with

affine cost functions, i.e., cost functions of the form c j (kj ) = ajkj +

bj , are (
5

3
, 1

3
)-smooth. So, their ϵ-diversified price of anarchy is at

most 2.5. We now adapt the proof in Roughgarden [25] to show that

players with vanishing regret with respect to diversified strategies

will also approach the bound of Theorem 3.5.

Theorem 3.6. Suppose that in repeated play of a (λ, µ)-smooth
game, each player i uses a sequence of mixed strategies s(1)i , . . . , s

(T )
i

such that for any ϵ-diversified strategy s∗i we have:

1

T

T∑
t=1

costi (s(t )) ≤
1

T

T∑
t=1

costi (s
∗
i , s

(t )
−i ) + ∆T .

Then the average social cost over the T steps satisfies

1

T

T∑
t=1

cost(s(t )) ≤
λ

1 − µ
cost(s∗) +

k∆T
1 − µ

.

In particular, if ∆T → 0 then the average social cost approaches the
bound of Theorem 3.5.

Proof. Combining the assumption of the theorem, the definition

of social cost, and the smoothness definition we have:

1

T

T∑
t=1

cost(s(t )) =
1

T

T∑
t=1

k∑
i=1

costi (s(t ))

(definition of social cost)

≤

k∑
i=1

[
1

T

T∑
t=1

costi (s
∗
i , s

(t )
−i ) + ∆T

]
(assumption of theorem)

=
1

T

T∑
t=1

[ k∑
i=1

costi (s
∗
i , s

(t )
−i )

]
+ k∆T

(rearranging)

≤
1

T

T∑
t=1

[
λ cost(s∗) + µ cost(s(t ))

]
+ k∆T .

(applying smoothness)



Rearranging, we have:

(1 − µ)
1

T

T∑
t=1

cost(s(t )) ≤ λ cost(s∗) + k∆T ,

which immediately yields the result of the theorem. □

3.3 The Cost of Diversification
We now complement the above results by considering how much

worse cost(s∗ϵ ) can be compared to cost(s∗) in natural games. We

focus here on unit-demand congestion games where each strategy

set Si ⊆ R; that is, each player i selects a single resource in Si . In

particular, we focus on two important special cases: (a) c j (kj ) =
1/kj ∀j (players share the cost of their resource equally with all

others who make the same choice; this can be viewed as a game-

theoretic distributed hitting-set problem), and (b) c j (kj ) = kj ∀j , i.e.,
linear congestion games. To avoid unnecessary complication, we

assume all Si have the same size n, i.e., every player has n choices.

We will also think of the number of choices per player n as O(1),
whereas the number of players k and the total number of resources

R may be large.

Unfortunately, in both cases (a) and (b), the cost of diversification

can be very high in the worst case. For case (a) (cost sharing), a bad

scenario is if there is a single element j∗ such that Si ∩ Si′ = j∗

for all pairs i , i ′. Here, cost(s∗) = 1 since all players can choose

j∗, but for any ϵ ∈ [ 2

n , 1], we have E[cost(s
∗
ϵ )] = Ω(k), since even

in the best solution each player has a 50% chance of choosing a

resource that no other player chose. For case (b) (linear congestion),

a bad scenario is if there are n − 1 elements j∗
1
, . . . , j∗n−1

such that

Si ∩Si′ = {j∗
1
, . . . , j∗n−1

} for all pairs i , i ′. Here, cost(s∗) = k since

each player can choose a distinct resource, but for any ϵ ∈ [ 2

n , 1],

we have E[cost(s∗ϵ )] = Ω(k2/(n − 1)), which is Ω(k2) for n = O(1).
So, in both cases, the ratio cost(s∗ϵ )/cost(s

∗) = Ω(k).
However, in the average case (each Si consists of n random ele-

ments from R) the cost of diversification is only O(1).

Theorem 3.7. For both (a) unit-demand cost-sharing and (b) unit-
demand linear congestion games, with n = O(1) strategies per player
and random strategy sets Si , E[cost(s∗ϵ )] = O(E[cost(s

∗)]).

Proof. Let us first consider (a) unit-demand cost-sharing. One

lower bound on cost(s∗) is that it is at least the cardinality of the

largest collection of disjoint strategy sets Si ; for n = 2 this is

the statement that the smallest vertex cover in a graph is at least

the size of the maximum matching. Now consider selecting the

random sets Si one at a time. For i ≤ R/n2
, the first i sets cover

at most R/n resources, so set Si+1 has at least a constant prob-

ability of being disjoint from the first i . This means that the ex-

pected size of the largest collection of disjoint strategy sets is at

least Ω(min{k,R/n2}). On the other hand, a trivial upper bound

on cost(s∗ϵ ), even for ϵ = 1, is min{k,R}, since at worst each player

takes a separate resource until all resources are used. Thus, for

n = O(1), we have E[cost(s∗ϵ )] = O(E[cost(s
∗)]).

Now let us consider (b) unit-demand linear congestion. In this

case, a lower bound on cost(s∗) is the best-case allocation of all

resources equally divided. In this case we have k/R usage per re-

source for a total cost of R×(k/R)2 = k2/R. Another lower bound is
simply k , so we have cost(s∗) ≥ max{k,k2/R}. On the other hand,

we can notice that s∗ϵ for a fully-diversified ϵ = 1 and random sets

Si is equivalent to players choosing resources independently at

random. In this case, the social cost is identical to the analysis of

random hashing: E[cost(s∗
1
)] = E[

∑
j k

2

j ] = k + k(k − 1)/R. Thus,

E[cost(s∗ϵ )] = O(E[cost(s
∗)]) as desired. □

4 DISTRIBUTED SETTING
We now consider a distributed setting where the actions of the

row player are partitioned among k entities, such as subdivisions

within a company or machines in a distributed system. At each

time step, the row player asks for a number of actions from each

entity, and plays a mixed strategy over them. However, asking for

actions requires communication, which we would like to minimize.

Our aim is to obtain results similar to Theorem 2.4 with low

communication complexity, measured by the number of actions

requested and any additional constant-sized words communicated.

Let d ≤ logm denote the VC-dimension or pseudo-dimension of

the set of columns H , viewing each row as an example and each

column as a hypothesis. A baseline approach is that the row player

samples O( dϵ 2
log

1

ϵ ) times, from the uniform multinomial distribu-

tion over {1, . . . ,k} and asks each entity to send the corresponding

number of actions to the row player. The row player can then use

Algorithm 1 as in the centralized setting over the sampled actions,

and will lose only an additional ϵ in the value of its strategy. The

communication complexity of this method is O( dϵ 2
log

1

ϵ ) actions

plus O(k) additional words. Here, we provide an algorithm that re-

duces communication to O(d log(1/ϵ)). The idea is to show that in

Algorithm 1, each iteration of the multiplicative weight update can

be simulated in the distributed setting with O(d) communication.

Then, since there are at most O(log(1/ϵ)) iterations, the desired

result follows. More specifically, we show that in each iteration, we

can do the following two actions communication efficiently:

(1) For any distribution P over the rows partitioned across k
entities, obtain a column j such thatM(P , j) ≥ vϵ .

(2) Update the distribution using the received column j.

To achieve the first statement, assume there is a centralized

oracle, which for any ϵ-diversified distribution P returns a col-

umn j such that M(P , j) ≥ vϵ . For any distribution P partitioned

across k entities, each agent first sends its sum of weights to the

row player. Then, the row player samples O( d
(1−α )2v2

ϵ
) actions

(0 < α < 1) across the k agents proportional to their sum of

weights, where d is the VC-dimension of H . By the standard VC-

theory, a mixed strategy P ′ of choosing a uniform distribution

over the sampled actions is a (1 − α)vϵ -approximation for H , i.e.

M(P ′, j) ≥ M(P , j)−(1−α)vϵ ≥ αvϵ for all column j ∈ H . The com-

munication complexity of this step isO( d
(1−α )2v2

ϵ
) actions plusO(k)

additional words. For (2), we show steps 3 and 4 in Algorithm 1 can

be simulated with low communication. Step 3 is easy: just send col-

umn j to all entities, and each entity then updates its own weights.

What is left is to show that the projection step in Algorithm 1 can

be simulated in the distributed setting. Fortunately, this projection

step has been studied before in the distributed machine learning

literature [11], where an efficient algorithm with O(k log
2(d/ϵ))

words of comunication is proposed. We summarize our results for

the distributed setting with the following theorem.
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Figure 2: Simulated resuls of Braess’ paradox afterT = 10, 000

rounds. A more diversified strategy leads to lower loss.

Theorem 4.1. Given a centralized oracle, which for any ϵ-diversified
distribution P returns a column j such that M(P , j) ≥ vϵ . If the ac-
tions of the row players are distributed across k entities, there is an
algorithm that constructs a mixed strategy Q such that for all but
an ϵ fraction of the rows i ,M(i,Q) ≥ αvϵ − γ , 0 < α < 1. The algo-
rithm requests at most O( log(1/ϵ )

γ 2(1+γ−αvϵ )
· d
(1−α )2v2

ϵ
) actions and uses

an additionalO( log(1/ϵ )
γ 2(1+γ−αvϵ )

·k log
2(d/ϵ)) words of communication.

5 EXPERIMENTS
To better understand the benefit of diversified strategies, we give

some empirical simulations for both two-player zero-sum games

and general-sum games. For all the experiments, we fix γ = 0.2 and

show the results of using different values of ϵ .
Two-player zero-sum games. The row player has n = 10 ac-

tions to choose from, where each round, each action ai returns
a uniformly random reward ri ∈ [i/n, 1]. The game is played for

T = 10, 000 rounds. Note that the n-th action has the highest ex-

pected reward.

We consider two scenarios in which a rare but catastrophic event

occurs. The first scenario is that at time T , the cumulative reward

gained from choosing the n-th action becomes zero. The second

scenario is that the n-th action incurs a large negative reward of

−T in time step T . Both of these can be viewed as different ways of

simulating a bad event where, for instance, the shares of a company

become worthless when the company goes bankrupt.

The results for both scenarios, averaged over 10 independent

trials, are shown in Figure 3. One can see that as expected, in

the normal situation, the diversified strategy gains less reward.

However, when the rare event happens, the non-diversified strategy

gains very low reward. In both cases, a modest value of ϵ = 0.4

achieves a high reward whether the bad event happens or not.

General-sum games. We play the routing game defined in

Braess’ paradox (see Figure 1). Each player has three routes to

choose from (s-a-b-t , s-a-t , and s-b-t ) in each round, so ϵ ∈ [1/3, 1].

As anlyzed in Section 3.1, without the diversified constraint (i.e.,

ϵ = 1/3), the game quickly converges to the Nash equilibrium

where all players choose the route s-a-b-t and incur a loss of 2. The
best strategy in this case is to play the 1-diversified strategy, which
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Figure 3: Average reward over T = 10, 000 rounds with dif-
ferent values of ϵ . When the rare event happens, the non-
diversified strategy gains very low (even negative) reward.

incur a lower loss of about 1.55. See Figure 2 for the results using

other ϵ values.

6 CONCLUSION
We consider games in which one wants to play well without choos-

ing a mixed strategy that is too concentrated. We show that such a

diversification restriction has a number of benefits, and give adap-

tive algorithms to find diversified strategies that are near-optimal,

also showing how taxes or fines can be used to keep a standard

algorithm diversified. Further, our algorithms are simple and ef-

ficient, and can be implemented in a distributed setting. We also

analyze properties of diversified strategies in both zero-sum and

general-sum games, and give general bounds on the diversified

price of anarchy as well as the social cost achieved by diversified

regret-minimizing players.
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